1
|
Sheybani L, Frauscher B, Bernard C, Walker MC. Mechanistic insights into the interaction between epilepsy and sleep. Nat Rev Neurol 2025; 21:177-192. [PMID: 40065066 DOI: 10.1038/s41582-025-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
Epidemiological evidence has demonstrated associations between sleep and epilepsy, but we lack a mechanistic understanding of these associations. If sleep affects the pathophysiology of epilepsy and the risk of seizures, as suggested by correlative evidence, then understanding these effects could provide crucial insight into the basic mechanisms that underlie the development of epilepsy and the generation of seizures. In this Review, we provide in-depth discussion of the associations between epilepsy and sleep at the cellular, network and system levels and consider the mechanistic underpinnings of these associations. We also discuss the clinical relevance of these associations, highlighting how they could contribute to improvements in the management of epilepsy. A better understanding of the mechanisms that govern the interactions between epilepsy and sleep could guide further research and the development of novel approaches to the management of epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institute Neurosciences des Systèmes, Marseille, France
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
3
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huang L, Kang J, Chen G, Ye W, Meng X, Du Q, Feng Z. Low-intensity focused ultrasound attenuates early traumatic brain injury by OX-A/NF-κB/NLRP3 signaling pathway. Aging (Albany NY) 2022; 14:7455-7469. [PMID: 36126193 PMCID: PMC9550253 DOI: 10.18632/aging.204290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Background: Traumatic brain injury (TBI) is a serious hazard to human health and is characterized by high rates of disability and mortality. It is necessary to explore new effective treatment methods to reduce the impact of TBI on individuals and society. As an emerging neuromodulation technique, ultrasound is used to treat some neurological diseases, but the neuroprotective mechanism of low-intensity focused ultrasound (LIFUS) in TBI remains unclear. We aimed to investigate the protective effects and potential mechanisms of LIFUS in TBI. Methods: A rat model of TBI was established using the free-fall method. After establishing the TBI model, the hypothalamus region was covered with LIFUS radiation, and an orexin receptor 1 (OXR1) antagonist (SB334867) was injected intraperitoneally. Neurobehavioral examination, Nissl staining, hematoxylin and eosin staining of the brain tissue, and brain water content, were performed 3 days later. Western blotting, quantitative real-time polymerase chain reaction, immunofluorescence staining, and immunohistochemical staining, were used to evaluate the neuroprotective mechanisms of LIFUS. Results: LIFUS improved tissue damage, neurological deficits, and brain edema. LIFUS can increase the expression of orexin-A (OX-A) and OXR1, significantly inhibit the activation of nuclear factor-κB (NF-κB) protein and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome after TBI, and reduce the release of pro-inflammatory factors after TBI; however, SB334867 can reverse this effect. Conclusions: This study suggests that LIFUS may play a neuroprotective role by promoting the release of OX-A from the hypothalamus and inhibiting the inflammatory response after TBI through the OX-A /NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Lianghua Huang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Junwei Kang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Gengfa Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Wen Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiangqiang Meng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qing Du
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Zhen Feng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
6
|
Elahdadi Salmani M, Sarfi M, Goudarzi I. Hippocampal orexin receptors: Localization and function. VITAMINS AND HORMONES 2022; 118:393-421. [PMID: 35180935 DOI: 10.1016/bs.vh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orexin (hypocretin) is secreted from the perifornical/lateral hypothalamus and is well known for sleep regulation. Orexin has two, orexin A and B, transcripts and two receptors, type 1 and 2 (OX1R and OX2R), located in the plasma membrane of neurons in different brain areas, including the hippocampus involved in learning, memory, seizures, and epilepsy, as physiologic and pathologic phenomena. OX1R is expressed in the dentate gyrus and CA1 and the OX2R in the CA3 areas. Orexin enhances learning and memory as well as reward, stress, seizures, and epilepsy, partly through OX1Rs, while either aggravating or alleviating those phenomena via OX2Rs. OX1Rs activation induces long-term changes of synaptic responses in the hippocampus, an age and concentration-dependent manner. Briefly, we will review the localization and functions of hippocampal orexin receptors, their role in learning, memory, stress, reward, seizures, epilepsy, and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
7
|
Razavi BM, Farivar O, Etemad L, Hosseinzadeh H. Suvorexant, a Dual Orexin Receptor Antagonist, Protected Seizure through Interaction with GABA A and Glutamate Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:383-390. [PMID: 33224245 PMCID: PMC7667563 DOI: 10.22037/ijpr.2019.14688.12584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Orexin can increase neuronal excitability and induce epileptic activity. In this study, the effects of suvorexant (orexin receptor antagonist) on pentylenetetrazol (PTZ) and maximal electroshock (MES)-induced seizure were investigated. Mice were divided into 5 groups of six animals each including normal saline (10 mL/kg), diazepam (2 mg/kg), and suvorexant (50, 100 and 200 mg/kg) groups. In PTZ test, the latency to first minimal clonic seizure (MCS), latency to the first generalized tonic–clonic seizures (GTCS), total duration of seizure and also protection against mortality were evaluated. In MES, the hind limb tonic extension (HLTE) and the protection against mortality were recorded. In order to evaluate the role of GABAA in anticonvulsant effect of suvorexant, flumazenil was used and to investigate the role of glutamate, the protein levels of AMPAR and NMDAR were measured in hippocampus by western blotting. In PTZ model, suvorexant (200mg/kg) increased MCS and GTCS latencies. Suvorexant (100 and 200 mg/kg) decreased total duration of seizure compared to control group. In PTZ model, flumazenil inhibited the prolongation of seizure latency induced by suvorexant. In MES, the HLTE was decreased by suvorexant (100 and 200 mg/kg) and suvorexant was protected against mortality by 83.3%. Moreover, the protein levels of NMDAR and AMPAR were decreased by suvorexant. Suvorexant exerted anticonvulsant activity and in addition to its inhibitory effect on orexin receptors, this effect may be mediated, at least partly, through interaction with GABAA and glutamate receptors.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Mdical sciences,Mashhad,Iran
| | - Omid Farivar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Mdical sciences,Mashhad,Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Samzadeh M, Papuć E, Furtak-Niczyporuk M, Rejdak K. Decreased Cerebrospinal Fluid Orexin-A (Hypocretin-1) Concentrations in Patients after Generalized Convulsive Status Epilepticus. J Clin Med 2020; 9:jcm9103354. [PMID: 33086714 PMCID: PMC7589455 DOI: 10.3390/jcm9103354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The effects of status epilepticus on the orexin/hypocretin system have yet to be investigated. The present study aimed to assay orexin-A/hypocretin-1 in the cerebrospinal fluid (CSF) of patients after generalized convulsive status epilepticus (GCSE). The study groups included 20 GCSE patients, 24 patients diagnosed with epilepsy but remaining in remission (ER), and 25 normal controls (CTR). Diagnostic lumbar puncture was performed in GCSE patients within 3–10 days of seizure cessation, as well as in the ER and to CTR subjects. Among all GCSE patients, the outcome was graded according to the modified Rankin Scale (mRS) at 1-month follow-up. Orexin-A levels were measured in unextracted CSF samples, using a commercial radioimmunoassay. There was a significant overall difference in median CSF orexin-A concentrations between GCSE, RE, and CTR patients (p < 0.001). The lowest concentrations were noted in the GCSE group compared to ER (p < 0.001) or CTR (p < 0.001). CSF orexin-A levels in GCSE patients inversely correlated with clinical outcome as assessed on the mRS at 1-month follow-up (r = −0.55; p = 0.1). In conclusion, CSF orexin-A levels may serve as a biomarker of increased turn-over of the peptide or post-SE neuronal damage, and implicates the orexin system in the pathogenesis of SE.
Collapse
Affiliation(s)
- Mojdeh Samzadeh
- Department of Neurology, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (E.P.)
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (E.P.)
| | | | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (E.P.)
- Correspondence:
| |
Collapse
|
9
|
Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol Biochem Behav 2020; 194:172929. [PMID: 32315694 DOI: 10.1016/j.pbb.2020.172929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Orexin is a neurotransmitter that mainly regulates sleep/wake cycle. In addition to its sleep cycle regulatory role, it is involved in regulation of attention, energy homeostasis, neurogenesis and cognition. Several evidences has shown the involvement of orexin in narcolepsy, but there are also growing evidences that shows the disturbance in orexin system in neurodegenerative diseases including Alzheimer's, Parkinson's, Epilepsy, Huntington's diseases and Amyotrophic lateral sclerosis. Pathogenesis and clinical symptoms of these disorders can be partly attributed from orexin system imbalance. However, there are controversial reports on the exact relationship between orexin and these neurodegenerative diseases. Therefore, the aim of this review is to summarize the current evidences regarding the role of orexin in these neurodegenerative diseases.
Collapse
|
10
|
Yazdi A, Doostmohammadi M, Pourhossein Majarshin F, Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 2020; 105:106956. [PMID: 32062106 DOI: 10.1016/j.yebeh.2020.106956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
A seizure may occur because of the imbalance between glutamate and gamma-aminobutyric acid (GABA). Recurrent seizures induce some cognitive problems, such as, depression, learning and memory deficits, and neurodegeneration. Histamine is an appropriate therapeutic target for epilepsy via its effect on regulating neurotransmitter release. Also, evidence indicates the effect of histamine on neuroprotection and alleviating cognitive disorders. An ideal antiepileptic drug is a substance, which has both anticonvulsant effects and decreases the comorbidities that are induced by repeated seizures. Betahistine dihydrochloride (betahistine) is a structural analog of histamine. It acts as histamine H1 receptor agonist and H3 receptor antagonist, which enhances histaminergic neuronal activities. In the present study, we examined the effect of betahistine administration on seizure scores, memory deficits, depression, and neuronal loss induced by pentylenetetrazole (PTZ). Eight- to ten-week-old BALB/c male mice (20-25 g) received betahistine, 1, and 10 mg/kg daily from 7 days before the onset of PTZ-induced kindling until the end of the establishment of the kindling. We found that betahistine prevented generalized tonic-clonic seizures induction and diminished forelimb clonic seizures intensity. Also, it decreased cell death in the hippocampus and cortex, ameliorated the memory deficit and depression induced by PTZ in the kindled animals. Altogether, these results indicate that pretreatment and repetitive administration with betahistine exerts antiepileptogenic and anticonvulsant activity. These findings might be due to the neuroprotective impact of betahistine in the hippocampus and cortex.
Collapse
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadmahdi Doostmohammadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farshid Pourhossein Majarshin
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
11
|
Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci 2018; 19:49. [PMID: 30103703 PMCID: PMC6090721 DOI: 10.1186/s12868-018-0445-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excitatory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled rats. RESULTS Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it significantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ administration. CONCLUSION This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any significant effect on PTZ-induced anxiety.
Collapse
Affiliation(s)
- Saeedeh Asadi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoud Fereidoni
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Elham Kordijaz
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran.
| |
Collapse
|
12
|
Iyer SH, Matthews SA, Simeone TA, Maganti R, Simeone KA. Accumulation of rest deficiency precedes sudden death of epileptic Kv1.1 knockout mice, a model of sudden unexpected death in epilepsy. Epilepsia 2017; 59:92-105. [PMID: 29193044 DOI: 10.1111/epi.13953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Chronic sleep deficiency is associated with early mortality. In the epileptic population, there is a higher prevalence of sleep disorders, and individuals with severe refractory epilepsy are at greater risk of premature mortality than the general population. Sudden unexpected death in epilepsy affects 1:1000 cases of epilepsy each year. Ketogenic diet (KD) treatment is one of the few effective options for refractory seizures. Despite KD reducing seizures and increasing longevity in Kv1.1 knockout (KO) mice, they still succumb to sudden death. This study aims to determine whether (1) the rest profiles of KO and KD-treated KO (KOKD) mice resemble each other as a function of either age or proximity to death and (2) the timing of death correlates with acute or chronic changes in rest. METHODS Noninvasive actimetry was used to monitor rest throughout the lives of KO and wild-type (WT) littermates administered standard diet or KD. RESULTS As KO mice age, rest is reduced (P < .0001). Rest is significantly improved in KDKO mice (P < .0001), resembling WT values at several ages. When age is removed as a variable and data are realigned to the day of death, the rest profiles of KO and KOKD groups worsen to similar degrees as a function of proximity to death. The amount of rest acutely is not sensitive to the timing of death, whereas chronic rest deficiency profiles (10-15 days prior to death) of both groups were indistinguishable. Chronic accumulation of rest deficiency over the final 15 days was associated with 75% of deaths. SIGNIFICANCE Our data suggest that the accumulated rest deficiency is associated with sudden death in Kv1.1 KO mice. These data (1) support the proposed clinical hypothesis that chronic sleep deficiency may be associated with early mortality in epileptic patients and (2) warrant future preclinical and clinical studies on sleep monitoring in epileptic patients.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Stephanie A Matthews
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
13
|
|
14
|
Kordi Jaz E, Moghimi A, Fereidoni M, Asadi S, Shamsizadeh A, Roohbakhsh A. SB-334867, an orexin receptor 1 antagonist, decreased seizure and anxiety in pentylenetetrazol-kindled rats. Fundam Clin Pharmacol 2016; 31:201-207. [DOI: 10.1111/fcp.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Elham Kordi Jaz
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Ali Moghimi
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Masoud Fereidoni
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Saeedeh Asadi
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center and Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Pistachio Co Street Rafsanjan Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center; Mashhad University of Medical Sciences; Azadi Square Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Azadi Square Mashhad Iran
| |
Collapse
|
15
|
SB 334867, a selective orexin receptor type 1 antagonist, elevates seizure threshold in mice. Life Sci 2016; 150:81-8. [DOI: 10.1016/j.lfs.2016.02.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 11/17/2022]
|
16
|
Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016. [PMID: 26446112 DOI: 10.5665/sleep.5444.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. METHODS Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. RESULTS Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. CONCLUSION Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models.
Collapse
Affiliation(s)
| | - Timothy A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | - Chaz Johnson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | | | - Kaeli K Samson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | - Kristina A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
17
|
Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016; 39:357-68. [PMID: 26446112 DOI: 10.5665/sleep.5444] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/28/2015] [Indexed: 01/14/2023] Open
Abstract
STUDY OBJECTIVE Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. METHODS Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. RESULTS Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. CONCLUSION Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models.
Collapse
Affiliation(s)
| | - Timothy A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | - Chaz Johnson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | | | - Kaeli K Samson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| | - Kristina A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
18
|
Hippocampal orexin receptors inactivation reduces PTZ induced seizures of male rats. Pharmacol Biochem Behav 2015; 130:77-83. [DOI: 10.1016/j.pbb.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
|
19
|
Perin M, Longordo F, Massonnet C, Welker E, Lüthi A. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors. J Physiol 2014; 592:4277-95. [PMID: 25085886 DOI: 10.1113/jphysiol.2014.272757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Collapse
Affiliation(s)
- Martina Perin
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Fabio Longordo
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Christine Massonnet
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Egbert Welker
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| |
Collapse
|