1
|
Henderson AR, Wang Q, Meechoovet B, Siniard AL, Naymik M, De Both M, Huentelman MJ, Caselli RJ, Driver-Dunckley E, Dunckley T. DNA Methylation and Expression Profiles of Whole Blood in Parkinson's Disease. Front Genet 2021; 12:640266. [PMID: 33981329 PMCID: PMC8107387 DOI: 10.3389/fgene.2021.640266] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease. It is presently only accurately diagnosed at an advanced stage by a series of motor deficits, which are predated by a litany of non-motor symptoms manifesting over years or decades. Aberrant epigenetic modifications exist across a range of diseases and are non-invasively detectable in blood as potential markers of disease. We performed comparative analyses of the methylome and transcriptome in blood from PD patients and matched controls. Our aim was to characterize DNA methylation and gene expression patterns in whole blood from PD patients as a foundational step toward the future goal of identifying molecular markers that could predict, accurately diagnose, or track the progression of PD. We found that differentially expressed genes (DEGs) were involved in the processes of transcription and mitochondrial function and that PD methylation profiles were readily distinguishable from healthy controls, even in whole-blood DNA samples. Differentially methylated regions (DMRs) were functionally varied, including near transcription factor nuclear transcription factor Y subunit alpha (NFYA), receptor tyrosine kinase DDR1, RING finger ubiquitin ligase (RNF5), acetyltransferase AGPAT1, and vault RNA VTRNA2-1. Expression quantitative trait methylation sites were found at long non-coding RNA PAX8-AS1 and transcription regulator ZFP57 among others. Functional epigenetic modules were highlighted by IL18R1, PTPRC, and ITGB2. We identified patterns of altered disease-specific DNA methylation and associated gene expression in whole blood. Our combined analyses extended what we learned from the DEG or DMR results alone. These studies provide a foundation to support the characterization of larger sample cohorts, with the goal of building a thorough, accurate, and non-invasive molecular PD biomarker.
Collapse
Affiliation(s)
- Adrienne R Henderson
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qi Wang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Bessie Meechoovet
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ashley L Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Marcus Naymik
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Matthew De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | | | | | - Travis Dunckley
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
3
|
Wang YC, Zou YB, Xiao J, Pan CD, Jiang SD, Zheng ZJ, Yan ZR, Tang KY, Tan LM, Tang MS. COMT Val158Met polymorphism and Parkinson’s disease risk: a pooled analysis in different populations. Neurol Res 2019; 41:319-325. [PMID: 30644790 DOI: 10.1080/01616412.2018.1564183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yan-chun Wang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Yao-bing Zou
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Jing Xiao
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Cheng-de Pan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Si-de Jiang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Zong-ju Zheng
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Zong-ren Yan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Kun-yu Tang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Lang-min Tan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Ming-shan Tang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| |
Collapse
|
4
|
Wang D, Zhai JX, Liu DW. Glutathione S-transferase M1 polymorphisms and Parkinson’s disease risk: a meta-analysis. Neurol Res 2016; 38:144-50. [DOI: 10.1080/01616412.2015.1126996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opin Drug Metab Toxicol 2016; 12:433-48. [PMID: 26910127 DOI: 10.1517/17425255.2016.1158250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The inheritance pattern of Parkinson's disease (PD) is likely multifactorial (owing to the interplay of genetic predisposition and environmental factors). Many pharmacogenetic studies have tried to establish a possible role of candidate genes in PD risk. Several studies have focused on the influence of genes in the response to antiparkinsonian drugs and in the risk of developing side-effects of these drugs. AREAS COVERED This review presents an overview of current knowledge, with particular emphasis on the most recent advances, both in case-control association studies on the role of candidate genes in the risk for PD as well as pharmacogenetic studies on the role of genes in the development of side effects of antiparkinsonian drugs. The most reliable results should be derived from meta-analyses of case-control association studies on candidate genes involving large series of PD patients and controls, and from genome-wide association studies (GWAS). EXPERT OPINION Prospective studies of large samples involving several genes with a detailed history of exposure to environmental factors in the same cohort of subjects, should be useful to clarify the role of genes in the risk for PD. The results of studies on the role of genes in the development of side-effects of antiparkinsonian drugs should, at this stage, only be considered preliminary.
Collapse
Affiliation(s)
| | | | | | - José A G Agúndez
- b Department of Pharmacology , University of Extremadura , Cáceres , Spain
| |
Collapse
|
6
|
Val158Met polymorphism of COMT gene and Parkinson’s disease risk in Asians. Neurol Sci 2014; 36:109-15. [DOI: 10.1007/s10072-014-1896-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
|