1
|
Castelnovo V, Canu E, De Mattei F, Filippi M, Agosta F. Basal ganglia alterations in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1133758. [PMID: 37090799 PMCID: PMC10113480 DOI: 10.3389/fnins.2023.1133758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo De Mattei
- ALS Center, SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta,
| |
Collapse
|
2
|
Trojsi F, Di Nardo F, Caiazzo G, Siciliano M, D’Alvano G, Passaniti C, Russo A, Bonavita S, Cirillo M, Esposito F, Tedeschi G. Between-sex variability of resting state functional brain networks in amyotrophic lateral sclerosis (ALS). J Neural Transm (Vienna) 2021; 128:1881-1897. [PMID: 34471976 PMCID: PMC8571222 DOI: 10.1007/s00702-021-02413-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
The organization of brain functional connectivity (FC) has been shown to differ between sexes. Amyotrophic lateral sclerosis (ALS) is characterized by sexual dimorphism, showing sex-specific trends in site of onset, phenotypes, and prognosis. Here, we explored resting state (RS) FC differences within major large-scale functional networks between women and men in a sample of ALS patients, in comparison to healthy controls (HCs). A group-level independent component analysis (ICA) was performed on RS-fMRI time-series enabling spatial and spectral analyses of large-scale RS FC networks in 45 patients with ALS (20 F; 25 M) and 31 HCs (15 F; 16 M) with a focus on sex-related differences. A whole-brain voxel-based morphometry (VBM) was also performed to highlight atrophy differences. Between-sex comparisons showed: decreased FC in the right middle frontal gyrus and in the precuneus within the default mode network (DMN), in affected men compared to affected women; decreased FC in the right post-central gyrus (sensorimotor network), in the right inferior parietal gyrus (right fronto-parietal network) and increased FC in the anterior cingulate cortex and right insula (salience network), in both affected and non-affected men compared to women. When comparing affected men to affected women, VBM analysis revealed atrophy in men in the right lateral occipital cortex. Our results suggest that in ALS sex-related trends of brain functional and structural changes are more heavily represented in DMN and in the occipital cortex, suggesting that sex is an additional dimension of functional and structural heterogeneity in ALS.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulia D’Alvano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
3
|
Zhang YQ, Peng MY, Wu SN, Yu CY, Chen SY, Tan SW, Shao Y, Zhou Q. Fractional amplitude of low-frequency fluctuation in patients with neovascular glaucoma: a resting-state functional magnetic resonance imaging study. Quant Imaging Med Surg 2021; 11:2138-2150. [PMID: 33936994 DOI: 10.21037/qims-20-855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Neovascular glaucoma (NVG) is a secondary refractory disease with a poor prognosis, and there are few advanced studies on its pathogenesis and treatment. In this research, the fractional amplitude of low-frequency fluctuation (fALFF) technology was used in resting-state functional magnetic resonance imaging (rsfMRI) to investigate intrinsic neuron activity in the patient's brain with NVG. Methods Sixteen patients with NVG (eight males and eight females) and 16 healthy controls (HCs) of similar age and sex were included. All patients and controls received rsfMRI scans, and the differences between the two groups in fALFF values were compared by independent sample t-test. Receiver operating characteristic (ROC) curves were used to compare fALFF values in the brain regions of NVG patients and HCs and assess accuracy. Finally, Pearson linear correlation analysis assessed the correlation between fALFF signals in brain regions and the clinical evaluation indicators of patients with NVG. Results In patients with NVG, fALFF signal values in the right Rolandic operculum, left anterior cingulate and paracingulate gyri, and right caudate were significantly decreased. In contrast, fALFF signal values in the left precuneus were significantly higher than those recorded in the HCs. Analysis of the ROC curve for each brain region showed that the area under the ROC curve of NVG patients was large (close to 1), and the accuracy was good. In the NVG group, the hospital anxiety and depression scale (r=-0.952, P<0.001) and left best-corrected visual acuity (r=-0.802, P<0.001) had a negative linear correlation with the fALFF signal value of the right Rolandic operculum. The hospital anxiety and depression scale had a negative linear correlation with the fALFF signal value of the right caudate (r=-0.948, P<0.001). Conclusions NVG patients showed dysfunction in several brain regions. These findings may assist in revealing the underlying neural mechanism of brain activity associated with NVG.
Collapse
Affiliation(s)
- Yu-Qing Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Meng-Ying Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Chen-Yu Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Si-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Si-Wen Tan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
4
|
Ma X, Lu F, Chen H, Hu C, Wang J, Zhang S, Zhang S, Yang G, Zhang J. Static and dynamic alterations in the amplitude of low-frequency fluctuation in patients with amyotrophic lateral sclerosis. PeerJ 2020; 8:e10052. [PMID: 33194375 PMCID: PMC7643554 DOI: 10.7717/peerj.10052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Static changes in local brain activity in patients suffering from amyotrophic lateral sclerosis (ALS) have been studied. However, the dynamic characteristics of local brain activity are poorly understood. Whether dynamic alterations could differentiate patients with ALS from healthy controls (HCs) remains unclear. Methods A total of 54 patients with ALS (mean age = 48.71 years, male/female = 36/18) and 54 (mean age = 48.30 years, male/female = 36/18) HCs underwent magnetic resonance imaging scans. To depict static alterations in cortical activity, amplitude of low-frequency fluctuations (ALFF) which measures the total power of regional activity was computed. Dynamic ALFF (d-ALFF) from all subjects was calculated using a sliding-window approach. Statistical differences in ALFF and d-ALFF between both groups were used as features to explore whether they could differentiate ALS from HC through support vector machine method. Results In contrast with HCs, patients with ALS displayed increased ALFF in the right inferior temporal gyrus and bilateral frontal gyrus and decreased ALFF in the left middle occipital gyrus and left precentral gyrus. Furthermore, patients with ALS demonstrated lower d-ALFF in widespread regions, including the right lingual gyrus, left superior temporal gyrus, bilateral precentral gyrus, and left paracentral lobule by comparison with HCs. In addition, the ALFF in the left superior orbitofrontal gyrus had a tendency of correlation with ALSFRS-R score and disease progression rate. The classification performance in distinguishing ALS was higher with both features of ALFF and d-ALFF than that with a single approach. Conclusions Decreased dynamic brain activity in the precentral gyrus, paracentral gyrus, lingual gyrus, and temporal regions was found in the ALS group. The combined ALFF and d-ALFF could distinguish ALS from HCs with a higher accuracy than ALFF and d-ALFF alone. These findings may provide important evidence for understanding the neuropathology underlying ALS.
Collapse
Affiliation(s)
- Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, China.,MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Caihong Hu
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiao Wang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Sheng Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Shuqin Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Cancer Institute, Chongqing, China.,Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Ma X, Lu F, Hu C, Wang J, Zhang S, Zhang S, Yang G, Zhang J. Dynamic alterations of spontaneous neural activity in patients with amyotrophic lateral sclerosis. Brain Imaging Behav 2020; 15:2101-2108. [PMID: 33047237 DOI: 10.1007/s11682-020-00405-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease featured by movement disorder. Studies on ALS using static neuroimaging indexes demonstrated inconsistent results. However, recent work indicated that the intrinsic brain activity was time-varying, and the abnormal temporal dynamics of brain activity in ALS remains unknown. Resting-state functional magnetic resonance imaging data were first obtained from 54 patients with ALS and 54 healthy controls (HCs). Then the dynamic regional homogeneity (d-ReHo) was calculated and compared between the two groups. Correlation analyses between altered d-ReHo and clinical scores were further performed. Compared with HCs, ALS patients showed higher d-ReHo in the left lingual gyrus while lower d-ReHo in the left rectus gyrus and left parahippocampal gyrus. Moreover, the d-ReHo in the left lingual gyrus exhibited correlation with disease progression rate in ALS at a trend level. Our findings suggested that altered dynamics in intrinsic brain activity might be a potential biomarker for diagnosing of ALS.
Collapse
Affiliation(s)
- Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Fengmei Lu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Caihong Hu
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jiao Wang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Sheng Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Shuqin Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
6
|
Neural intrinsic functional connectivity associated with sensation seeking in heavy metal music and classical music lovers. Neuroreport 2019; 30:317-322. [PMID: 28926475 DOI: 10.1097/wnr.0000000000000883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the spontaneous neural activity and functional connectivity in heavy metal music lovers (HMML) and classical music lovers (CML) as well as the neural correlates of sensation seeking in two groups. Thrity-six HMML and 30 CML underwent resting-state functional MRI scans. Fractional amplitude of low-frequency fluctuations and seed-based resting-state functional connectivity (RSFC) were computed to explore regional activity and functional integration. A voxel-wise two-sample t-test was used to test the differences between the two groups and a whole-brain correlation analysis was carried out to explore RSFCs that were related to sensation seeking scores in HMML and CML separately. Compared with CML, HMML showed lower fractional amplitude of low-frequency fluctuations in the right gyrus rectus and lower RSFC between the right gyrus rectus and the right precuneus. Correlation results indicate that preferences for heavy metal music and classical music were associated with the relationship between RSFC and sensation seeking. These findings may suggest the neural correlates of sensation seeking were related to music preference (heavy metal music vs. classical music).
Collapse
|
7
|
Bueno APA, Pinaya WHL, Rebello K, de Souza LC, Hornberger M, Sato JR. Regional Dynamics of the Resting Brain in Amyotrophic Lateral Sclerosis Using Fractional Amplitude of Low-Frequency Fluctuations and Regional Homogeneity Analyses. Brain Connect 2019; 9:356-364. [PMID: 30793923 DOI: 10.1089/brain.2019.0663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resting-state functional magnetic resonance imaging has been playing an important role in the study of amyotrophic lateral sclerosis (ALS). Although functional connectivity is widely studied, the patterns of spontaneous neural activity of the resting brain are important mechanisms that have been used recently to study a variety of conditions but remain less explored in ALS. Here we have used fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) to study the regional dynamics of the resting brain of nondemented ALS patients compared with healthy controls. As expected, we found the sensorimotor network with changes in fALFF and ReHo, and also found the default mode network (DMN), frontoparietal network (FPN), and salience network (SN) altered and the cerebellum, although no structural changes between ALS patients and controls were reported in the regions with fALFF and ReHo changes. We show an altered pattern in the spontaneous low-frequency oscillations that is not confined to the motor areas and reveal a more widespread involvement of nonmotor regions, including those responsible for cognition.
Collapse
Affiliation(s)
- Ana Paula Arantes Bueno
- 1 Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil.,2 Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Walter Hugo Lopez Pinaya
- 1 Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil.,3 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Keila Rebello
- 1 Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Leonardo Cruz de Souza
- 4 Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Hornberger
- 2 Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,5 Norfolk and Suffolk NHS Foundation Trust, Norwich, United Kingdom
| | - João Ricardo Sato
- 1 Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
8
|
Xu XM, Jiao Y, Tang TY, Zhang J, Lu CQ, Salvi R, Teng GJ. Sensorineural hearing loss and cognitive impairments: Contributions of thalamus using multiparametric MRI. J Magn Reson Imaging 2019; 50:787-797. [PMID: 30694013 DOI: 10.1002/jmri.26665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The thalamus is an integrative hub conveying sensory information between cortical areas and related to cognition. However, alterations of the thalamus following partial hearing deprivation remains unknown. PURPOSE To investigate the modifications of the thalamus and its seven subdivisions in terms of structure, function, and perfusion in subjects with sensorineural hearing loss (SNHL), as well as their associations with SNHL-induced cognitive impairments. STUDY TYPE Cross-sectional study. SUBJECTS Thirty-seven bilateral long-term SNHL patients and 38 well-matched controls. FIELD STRENGTH 3 T/BOLD, T1 -weighted imaging, arterial spin labeling (ASL). ASSESSMENT Quantitative measurements in the thalamus and subdivisions were obtained, including the relative volume, fractional amplitude of low-frequency fluctuation (fALFF) within slow 5 (0.01-0.027 Hz), slow 4 (0.027-0.073 Hz), and combined frequency (0.01-0.073 Hz), as well as the whole-brain functional connectivity. Twenty-five SNHL patients and 20 controls underwent ASL scanning. Then correlation analysis was computed between all significant changes and cognition tests. STATISTICAL TESTS Continuous and categorical variables were compared by independent-sample t-test and chi-square test, respectively. Quantitative MRI measurement comparisons were corrected for multiple comparison, and functional connectivity (FC) analysis used two-sample t-test with false-discovery rate correction. Area under the curve (AUC) in receiver operating characteristic curve analysis was applied to evaluate the power of alterations in differentiating SNHL and controls. RESULTS No significant difference in the relative volume and perfusion of seven thalamus subdivisions were observed, but a decrease in fALFF in SNHL. SNHL showed reduced thalamic connectivity with the cerebellum lobule VIII, ventral anterior cingulate cortex, insula, superior temporal gyrus, media temporal gyrus, medial frontal gyrus, Heschl's gyrus, and temporal pole. And some FC abnormalities exhibited positive correlations with cognitive tests and high discriminative power (0.8 < AUC < 1) in two groups. DATA CONCLUSION SNHL led to decreased thalamic activity and widespread weakened connectivity with other brain areas. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:787-797.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, Zhou C, Luo C, Zhang J. Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2018; 21:101619. [PMID: 30528369 PMCID: PMC6411656 DOI: 10.1016/j.nicl.2018.101619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
Abstract
Neuroimaging studies of patients with amyotrophic lateral sclerosis (ALS) have shown widespread alterations in structure, function, and connectivity in both motor and non-motor brain regions, suggesting multi-systemic neurobiological abnormalities that might impact large-scale brain networks. Here, we examined the alterations in the topological organization of structural covariance networks of ALS patients (N = 60) compared with normal controls (N = 60). We found that structural covariance networks of ALS patients showed a consistent rearrangement towards a regularized architecture evidenced by increased path length, clustering coefficient, small-world index, and modularity, as well as decreased global efficiency, suggesting inefficient global integration and increased local segregation. Locally, ALS patients showed decreased nodal degree and betweenness in the gyrus rectus and/or Heschl's gyrus, and increased betweenness in the supplementary motor area, triangular part of the inferior frontal gyrus, supramarginal gyrus and posterior cingulate cortex. In addition, we identified a different number and distribution of hubs in ALS patients, showing more frontal and subcortical hubs than in normal controls. In conclusion, we reveal abnormal topological organization of structural covariance networks in ALS patients, and provide network-level evidence for the concept that ALS is a multisystem disorder with a cerebral involvement extending beyond the motor areas.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinru Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Na Zhang
- School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong Province, PR China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400044, PR China.
| |
Collapse
|
10
|
Li F, Zhou F, Huang M, Gong H, Xu R. Frequency-Specific Abnormalities of Intrinsic Functional Connectivity Strength among Patients with Amyotrophic Lateral Sclerosis: A Resting-State fMRI Study. Front Aging Neurosci 2017; 9:351. [PMID: 29163133 PMCID: PMC5681965 DOI: 10.3389/fnagi.2017.00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023] Open
Abstract
The classical concept that amyotrophic lateral sclerosis (ALS) is a degenerative disorder characterized by the loss of upper and lower motor neurons is agreed. However, more and more studies have suggested the involvement of some extra-motor regions. The aim of this study is to investigate the frequency-related alteration pattern of intrinsic functional connectivity strength (FCS) at the voxel-wise level in the relatively early-stage of ALS on a whole brain scale. In this study, 21 patients with ALS and 21 well-matched healthy control subjects were enrolled to examine the intrinsic FCS in the different frequencies (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz, and typical band: 0.01-0.1 Hz). Compared with the control subjects, the ALS patients showed a significantly decreased FCS in the left prefrontal cortex (PFC) and the bilateral superior frontal gyrus. In the slow-5 band, the patients with ALS showed decreased FCS in the left lingual gyrus, as well as increased FCS in the left postcentral gyrus/paracentral lobule (PoCG/PARC). In the slow-4 band, the ALS patients presented decreased FCS in the left and right ventrolateral PFC. Moreover, the increased FCS in the left PoCG/PARC in the slow-5 band was positively correlated with the ALSFRS-r score (P = 0.015). Our results demonstrated that the FCS changes in ALS were wide spread and frequency dependent. These findings may provide some evidences that ALS patients have the consistent impairment in some extra-motor regions at a relatively early-stage.
Collapse
Affiliation(s)
- Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|