1
|
Bertini A, Gentile L, Cavallaro T, Tozza S, Saveri P, Russo M, Massucco S, Falzone YM, Bellone E, Taioli F, Geroldi A, Occhipinti G, Ferrarini M, Cavalca E, Crivellari L, Mandich P, Balistreri F, Magri S, Taroni F, Previtali SC, Schenone A, Grandis M, Manganelli F, Fabrizi GM, Mazzeo A, Pareyson D, Pisciotta C. Phenotypic spectrum of myelin protein zero-related neuropathies: a large cohort study from five mutation clusters across Italy. J Neurol Neurosurg Psychiatry 2024; 96:47-53. [PMID: 38839277 PMCID: PMC11672051 DOI: 10.1136/jnnp-2024-333842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We aimed to investigate the clinical features of a large cohort of patients with myelin protein zero (MPZ)-related neuropathy, focusing on the five main mutation clusters across Italy. METHODS We retrospectively gathered a minimal data set of clinical information in a series of patients with these frequent mutations recruited among Italian Charcot-Marie-Tooth (CMT) registry centres, including disease onset/severity (CMTES-CMT Examination Score), motor/sensory symptoms and use of orthotics/aids. RESULTS We collected data from 186 patients: 60 had the p.Ser78Leu variant ('classical' CMT1B; from Eastern Sicily), 42 the p.Pro70Ser (CMT2I; mainly from Lombardy), 38 the p.Thr124Met (CMT2J; from Veneto), 25 the p.Ser44Phe (CMT2I; from Sardinia) and 21 the p.Asp104ThrfsX13 (mild CMT1B; from Apulia) mutation. Disease severity (CMTES) was higher (p<0.001) in late-onset axonal forms (p.Thr124Met=9.2±6.6; p.Ser44Phe=7.8±5.7; p.Pro70Ser=7.6±4.8) compared with p.Ser78Leu (6.1±3.5) patients. Disease progression (ΔCMTES/year) was faster in the p.Pro70Ser cohort (0.8±1.0), followed by p.Ser44Phe (0.7±0.4), p.Thr124Met (0.4±0.5) and p.Ser78Leu (0.2±0.4) patients. Disease severity (CMTES=1.2±1.5), progression (ΔCMTES/year=0.1±0.4) and motor involvement were almost negligible in p.Asp104ThrfsX13 patients, who, however, frequently (78%, p<0.001) complained of neuropathic pain. In the other four clusters, walking difficulties were reported by 69-85% of patients, while orthotic and walking aids use ranged between 40-62% and 16-28%, respectively. CONCLUSIONS This is the largest MPZ (and late-onset CMT2) cohort ever collected, reporting clinical features and disease progression of 186 patients from five different clusters across Italy. Our findings corroborate the importance of differentiating between 'classical' childhood-onset demyelinating, late-onset axonal and mild MPZ-related neuropathy, characterised by different pathomechanisms, in view of different therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Bertini
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Gentile
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Tiziana Cavallaro
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Stefano Tozza
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Paola Saveri
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Russo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Sara Massucco
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yuri Matteo Falzone
- INSPE and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emilia Bellone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Taioli
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Alessandro Geroldi
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
| | - Giuseppe Occhipinti
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Moreno Ferrarini
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Eleonora Cavalca
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Crivellari
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Mandich
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Angelo Schenone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Grandis
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiore Manganelli
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Gian Maria Fabrizi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Anna Mazzeo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Davide Pareyson
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Zhang Y, Pang D, Wang Z, Ma L, Chen Y, Yang L, Xiao W, Yuan H, Chang F, Ouyang H. An integrative analysis of genotype-phenotype correlation in Charcot Marie Tooth type 2A disease with MFN2 variants: A case and systematic review. Gene 2023; 883:147684. [PMID: 37536398 DOI: 10.1016/j.gene.2023.147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Dominant genetic variants in the mitofusin 2 (MFN2) gene lead to Charcot-Marie-Tooth type 2A (CMT2A), a neurodegenerative disease caused by genetic defects that directly damage axons. In this study, we reported a proband with a pathogenic variant in the GTPase domain of MFN2, c.494A > G (p.His165Arg). To date, at least 184 distinct MFN2 variants identified in 944 independent probands have been reported in 131 references. However, the field of medical genetics has long been challenged by how genetic variation in the MFN2 gene is associated with disease phenotypes. Here, by collating the MFN2 variant data and patient clinical information from Leiden Open Variant Database 3.0, NCBI clinvar database, and available related references in PubMed, we determined the mutation frequency, age of onset, sex ratio, and geographical distribution. Furthermore, the results of an analysis examining the relationship between variants and phenotypes from multiple genetic perspectives indicated that insertion and deletions (indels), copy number variants (CNVs), duplication variants, and nonsense mutations in single nucleotide variants (SNVs) tend to be pathogenic, and the results emphasized the importance of the GTPase domain to the structure and function of MFN2. Overall, three reliable classification methods of MFN2 genotype-phenotype associations provide insights into the prediction of CMT2A disease severity. Of course, there are still many MFN2 variants that have not been given clear clinical significance, which requires clinicians to make more accurate clinical diagnoses.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401120, China; Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China.
| | - Ziru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Wenyu Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401120, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130022, China.
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401120, China; Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China.
| |
Collapse
|
3
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
4
|
Karakaya T, Turkyilmaz A, Sager G, Inan R, Yarali O, Cebi AH, Akin Y. Molecular characterization of Turkish patients with demyelinating Charcot-Marie-Tooth disease. Neurogenetics 2022; 23:213-221. [DOI: 10.1007/s10048-022-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
5
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
6
|
Gentile L, Russo M, Taioli F, Ferrarini M, Aguennouz M, Rodolico C, Toscano A, Fabrizi GM, Mazzeo A. Rare among Rare: Phenotypes of Uncommon CMT Genotypes. Brain Sci 2021; 11:brainsci11121616. [PMID: 34942918 PMCID: PMC8699517 DOI: 10.3390/brainsci11121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Charcot–Marie–Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Collapse
Affiliation(s)
- Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
- Correspondence:
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - Moreno Ferrarini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| |
Collapse
|
7
|
Palaima P, Berciano J, Peeters K, Jordanova A. LRSAM1 and the RING domain: Charcot-Marie-Tooth disease and beyond. Orphanet J Rare Dis 2021; 16:74. [PMID: 33568173 PMCID: PMC7874611 DOI: 10.1186/s13023-020-01654-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023] Open
Abstract
In the past decade, mutations in LRSAM1 were identified as the genetic cause of both dominant and recessive forms of axonal CMT type 2P (CMT2P). Despite demonstrating different inheritance patterns, dominant CMT2P is usually characterized by relatively mild, slowly progressive axonal neuropathy, mainly involving lower limbs, with age of onset between the second and fifth decades of life. Asymptomatic individuals were identified in several pedigrees exemplifying the strong phenotypic variability of these patients requiring serial clinical evaluation to establish correct diagnosis; in this respect, magnetic resonance imaging of lower-limb musculature showing fatty atrophy might be helpful in detecting subclinical gene mutation carriers. LRSAM1 is a universally expressed RING-type E3 ubiquitin protein ligase catalysing the final step in the ubiquitination cascade. Strikingly, TSG101 remains the only known ubiquitination target hampering our mechanistic understanding of the role of LRSAM1 in the cell. The recessive CMT mutations lead to complete loss of LRSAM1, contrary to the heterozygous dominant variants. These tightly cluster in the C-terminal RING domain highlighting its importance in governing the CMT disease. The domain is crucial for the ubiquitination function of LRSAM1 and CMT mutations disrupt its function, however it remains unknown how this leads to the peripheral neuropathy. Additionally, recent studies have linked LRSAM1 with other neurodegenerative diseases of peripheral and central nervous systems. In this review we share our experience with the challenging clinical diagnosis of CMT2P and summarize the mechanistic insights about the LRSAM1 dysfunction that might be helpful for the neurodegenerative field at large.
Collapse
Affiliation(s)
- Paulius Palaima
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - José Berciano
- Service of Neurology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Universidad de Cantabria (UC), Santander, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
- Professor Emeritus, Department of Medicine and Psychiatry, ''Edificio Escuela Universitaria de Enfermería (Cuarta Planta)'', University of Cantabria, Avda. de Valdecilla s/n, Santander, Spain
| | - Kristien Peeters
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
8
|
Taga A, Cornblath DR. A novel HSPB1 mutation associated with a late onset CMT2 phenotype: Case presentation and systematic review of the literature. J Peripher Nerv Syst 2020; 25:223-229. [PMID: 32639100 DOI: 10.1111/jns.12395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
Mutations in the HSPB1 gene are associated with Charcot-Marie-Tooth (CMT) disease type 2F (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN2). More than 18 pathogenic mutations spanning across the whole HSPB1 gene have been reported. Three family members with a novel p.P57S (c.169C>T) HSPB1 mutation resulting in a late onset axonal neuropathy with heterogeneous clinical and electrophysiological features are detailed. We systematically reviewed published case reports and case series on HSPB1 mutations. While a genotype-phenotype correlation was not obvious, we identified a common phenotype, which included adult onset, male predominance, motor more frequently than sensory involvement, distal and symmetric distribution with preferential involvement of plantar flexors, and a motor and axonal electrophysiological picture.
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Charcot-Marie-Tooth disease: experience from a large Italian tertiary neuromuscular center. Neurol Sci 2020; 41:1239-1243. [PMID: 31902012 DOI: 10.1007/s10072-019-04219-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disease. Thanks to the advances of the latest generation sequencing, more than 80 causative genes have been reported to date. METHODS In this retrospective, observational study, we have analyzed clinical, electrophysiological, and genetic data of CMT patients in care at Neuromuscular Center of Messina University Hospital, Messina, Italy, for at least 22 years (from 1994 to 2016). Our center is the only reference center for genetic neuropathies in Sicily and in the southern part of Calabria. RESULTS We reviewed the clinical records of 566 patients with the aim to evaluate how many patients received a genetic diagnosis and the distribution of the genetic subtypes. About 352/566 (62.19%) received a genetic diagnosis. The most frequent genetic diagnoses were CMT1A/PMP22 duplication (51.13%), followed by HNPP/PMP22 deletion (15.05%), CMT1B/MPZ mutation (10.22%), CMTX/GJB1 mutation (9.37%), and CMT2F/HSPB1 (4%). Other rare mutations included MFN2 mutation (n. 8 pts), BSCL2 mutation (n.8 pts), PMP22 point mutation (n.7 pts), GDAP1 mutation (n.4 pts), GARSmutation (n. 2 pts), TRPV4 mutation (n. 2 pts), LITAF mutation (n.1 pt), and NEFL mutation (n. 1 pt). CONCLUSIONS Our study provides further data on frequency of CMT genes, subtypes in a wide Mediterranean area and contributes to help clinicians in addressing the genetic testing workup.
Collapse
|
10
|
Wu R, Fu J, Meng L, Lv H, Wang Z, Zhirong J, Yuan Y. Homozygous splice‐site mutation c.78 + 5G>A in
PMP22
causes congenital hypomyelinating neuropathy. Neuropathology 2019; 39:441-446. [PMID: 31777123 DOI: 10.1111/neup.12604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Rui Wu
- Department of NeurologyPeking University First Hospital Beijing China
| | - Jun Fu
- Department of NeurologyPeking University First Hospital Beijing China
| | - Lingchao Meng
- Department of NeurologyPeking University First Hospital Beijing China
| | - He Lv
- Department of NeurologyPeking University First Hospital Beijing China
| | - Zhaoxia Wang
- Department of NeurologyPeking University First Hospital Beijing China
| | - Jia Zhirong
- Department of NeurologyPeking University First Hospital Beijing China
| | - Yun Yuan
- Department of NeurologyPeking University First Hospital Beijing China
| |
Collapse
|
11
|
Federico A. Rare Diseases Day and Brain Awareness Week: the active participation of Neurological Sciences. Neurol Sci 2019; 40:441-445. [PMID: 30810825 DOI: 10.1007/s10072-019-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Antonio Federico
- Azienda Ospedaliera Universitaria Senese, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|