1
|
Sustained rubber hand illusion after the end of visuotactile stimulation with a similar time course for the reduction of subjective ownership and proprioceptive drift. Exp Brain Res 2021; 239:3471-3486. [PMID: 34524490 PMCID: PMC8599369 DOI: 10.1007/s00221-021-06211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/01/2021] [Indexed: 11/20/2022]
Abstract
The rubber hand illusion is a perceptual illusion in which participants experience an inanimate rubber hand as their own when they observe this model hand being stroked in synchrony with strokes applied to the person’s real hand, which is hidden. Earlier studies have focused on the factors that determine the elicitation of this illusion, the relative contribution of vision, touch and other sensory modalities involved and the best ways to quantify this perceptual phenomenon. Questionnaires serve to assess the subjective feeling of ownership, whereas proprioceptive drift is a measure of the recalibration of hand position sense towards the rubber hand when the illusion is induced. Proprioceptive drift has been widely used and thought of as an objective measure of the illusion, although the relationship between this measure and the subjective illusion is not fully understood. Here, we examined how long the illusion is maintained after the synchronous visuotactile stimulation stops with the specific aim of clarifying the temporal relationship in the reduction of both subjective ownership and proprioceptive drift. Our results show that both the feeling of ownership and proprioceptive drift are sustained for tens of seconds after visuotactile stroking has ceased. Furthermore, our results indicate that the reduction of proprioceptive drift and the feeling of ownership follow similar time courses in their reduction, suggesting that the two phenomena are temporally correlated. Collectively, these findings help us better understand the relationships of multisensory stimulation, subjective ownership, and proprioceptive drift in the rubber hand illusion.
Collapse
|
2
|
Bisio A, Biggio M, Canepa P, Faelli E, Ruggeri P, Avanzino L, Bove M. Primary motor cortex excitability as a marker of plasticity in a stimulation protocol combining action observation and kinesthetic illusion of movement. Eur J Neurosci 2021; 53:2763-2773. [PMID: 33539632 DOI: 10.1111/ejn.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Action observation combined with proprioceptive stimulation able to induce a kinesthetic illusion of movement (AO-KI) was shown to elicit a plastic increase in primary motor cortex (M1) excitability, with promising applications in rehabilitative interventions. Nevertheless, the known individual variability in response to combined stimulation protocols limits its application. The aim of this study was to examine whether a relationship exists between changes in M1 excitability during AO-KI and the long-lasting changes in M1 induced by AO-KI. Fifteen volunteers received a conditioning protocol consisting in watching a video showing a thumb-opposition movement and a simultaneous proprioceptive stimulation that evoked an illusory kinesthetic experience of their thumbs closing. M1 excitability was evaluated by means of single-pulse transcranial magnetic stimulation before, DURING the conditioning protocol, and up to 60 min AFTER it was administered. M1 excitability significantly increased during AO-KI with respect to a rest condition. Furthermore, AO-KI induced a long-lasting increase in M1 excitability up to 60 min after administration. Finally, a significant positive correlation appeared between M1 excitability changes during and after AO-KI; that is, participants who were more responsive during AO-KI showed greater motor cortical activity changes after it. These findings suggest that M1 response during AO-KI can be considered a neurophysiological marker of individual responsiveness to the combined stimulation since it was predictive of its efficacy in inducing long-lasting M1 increase excitability. This information would allow knowing in advance whether an individual will be a responder to AO-KI.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Lucente G, Valls-Sole J, Murillo N, Rothwell J, Coll J, Davalos A, Kumru H. Noninvasive Brain Stimulation and Noninvasive Peripheral Stimulation for Neglect Syndrome Following Acquired Brain Injury. Neuromodulation 2019; 23:312-323. [PMID: 31725939 DOI: 10.1111/ner.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hemispatial neglect is a frequent condition usually following nondominant hemispheric brain injury. It strongly affects rehabilitation strategies and everyday life activities. It is associated with behavioral and cognitive disability with a strong impact on patient's life. METHODS We reviewed the published literature on the use of noninvasive brain stimulation, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), and of noninvasive peripheral muscle stimulation, as therapeutic strategies for rehabilitation of neglect after acquired brain injury, such as in stroke or in traumatic injuries. The studies were grouped as controlled or uncontrolled studies in each stimulation techniques. RESULTS Thirty-four studies were identified and 16 on rTMS, 10 on tDCS, and 8 on vibration. All studies were conducted in adult patients who suffered a stroke, except for one that was conducted in a patient suffering traumatic acquired brain injury and another that was conducted in a patient with brain tumor. In spite of significant variability in treatment protocols, patients' features and assessment of neglect, improvement was reported in almost all studies with no side-effects. CONCLUSIONS Noninvasive brain stimulation and neuromuscular vibration are promising therapeutic neuromodulatory approaches for neglect. Further randomized-controlled studies are needed to corroborate their effectiveness as separate and combined techniques.
Collapse
Affiliation(s)
- Giuseppe Lucente
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Josep Valls-Sole
- EMG Department, Hospital Clinic, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Narda Murillo
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, University College London, London, UK
| | - Jaume Coll
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Antoni Davalos
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hatice Kumru
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| |
Collapse
|
4
|
Bisio A, Biggio M, Avanzino L, Ruggeri P, Bove M. Kinaesthetic illusion shapes the cortical plasticity evoked by action observation. J Physiol 2019; 597:3233-3245. [PMID: 31074046 DOI: 10.1113/jp277799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS The combination of action observation (AO) and a peripheral nerve stimulation has been shown to induce plasticity in the primary motor cortex (M1). However, using peripheral nerve stimulation little is known about the specificity of the sensory inputs. The current study, using muscle tendon vibration to stimulate muscle spindles and transcranial magnetic stimulation to assess M1 excitability, investigated whether a proprioceptive stimulation leading to a kinaesthetic illusion of movement (KI) was able to evoke M1 plasticity when combined with AO. M1 excitability increased immediately and up to 60 min after AO-KI stimulation as a function of the vividness of the perceived illusion, and only when the movement directions of AO and KI were congruent. Tactile stimulation coupled with AO and KI alone were not sufficient to induce M1 plasticity. This methodology might be proposed to subjects during a period of immobilization to promote M1 activity without requiring any voluntary movement. ABSTRACT Physical practice is crucial to evoke cortical plasticity, but motor cognition techniques, such as action observation (AO), have shown their potentiality in promoting it when associated with peripheral afferent inputs, without the need of performing a movement. Here we investigated whether the combination of AO and a proprioceptive stimulation, able to evoke a kinaesthetic illusion of movement (KI), induced plasticity in the primary motor cortex (M1). In the main experiment, the role of congruency between the observed action and the illusory movement was explored together with the importance of the specificity of the sensory input modality (proprioceptive vs. tactile stimulation) to induce plasticity in M1. Further, a control experiment was carried out to assess the role of the mere kinaesthetic illusion on M1 excitability. Results showed that the combination of AO and KI evoked plasticity in M1, with an increase of the excitability immediately and up to 60 min after the conditioning protocol (P always <0.05). Notably, a significant increase in M1 excitability occurred only when the directions of the observed and illusory movements were congruent. Further, a significant positive linear relationship was found between the amount of M1 excitability increase and the vividness of the perceived illusion (P = 0.03). Finally, the tactile stimulation coupled with AO was not sufficient to induce changes in M1 excitability as well as the KI alone. All these findings indicate the importance of combining different sensory input signals to induce plasticity in M1, and that proprioception is the most suitable sensory modality to allow it.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genova
| |
Collapse
|