1
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025; 41:881-905. [PMID: 39992353 PMCID: PMC12014895 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
2
|
Hall GR, Hutchings F, Horsley J, Simpson CM, Wang Y, de Tisi J, Miserocchi A, McEvoy AW, Vos SB, Winston GP, Duncan JS, Taylor PN. Epileptogenic networks in extra temporal lobe epilepsy. Netw Neurosci 2023; 7:1351-1362. [PMID: 38144694 PMCID: PMC10631792 DOI: 10.1162/netn_a_00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/22/2023] [Indexed: 12/26/2023] Open
Abstract
Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre- and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < -1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery.
Collapse
Affiliation(s)
- Gerard R. Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Hutchings
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Callum M. Simpson
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anna Miserocchi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew W. McEvoy
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Nedlands, Australia
| | - Gavin P. Winston
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, Canada
| | - John S. Duncan
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Haghshomar M, Mirghaderi SP, Shobeiri P, James A, Zarei M. White matter abnormalities in paediatric obsessive-compulsive disorder: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2023; 17:343-366. [PMID: 36935464 PMCID: PMC10195745 DOI: 10.1007/s11682-023-00761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Microstructural alterations in white matter are evident in obsessive-compulsive disorder (OCD) both in adult and paediatric populations. Paediatric patients go through the process of maturation and thus may undergo different pathophysiology than adult OCD. Findings from studies in paediatric obsessive-compulsive disorder have been inconsistent, possibly due to their small sample size or heterogeneous populations. The aim of this review is to provide a comprehensive overview of white matter structures in paediatric obsessive-compulsive disorder and their correlation with clinical features. Based on PRISMA guidelines, we performed a systematic search on diffusion tensor imaging studies that reported fractional anisotropy, mean diffusivity, radial diffusivity, or axial diffusivity alterations between paediatric patients with obsessive-compulsive disorder and healthy controls using voxel-based analysis, or tract-based spatial statistics. We identified fifteen relevant studies. Most studies reported changes predominantly in the corpus callosum, cingulum, arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, forceps minor and major, and the cerebellum in paediatric obsessive-compulsive disorder. These alterations included increased and decreased fractional anisotropy and radial diffusivity, and increased mean and axial diffusivity in different white matter tracts. These changes were associated with obsessive-compulsive disorder symptoms. Moreover, specific genetic polymorphisms were linked with cerebellar white matter changes in paediatric obsessive-compulsive disorder. White matter changes are widespread in paediatric OCD patients. These changes are often associated with symptoms however there are controversies in the direction of changes in some tracts.
Collapse
Affiliation(s)
- Maryam Haghshomar
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parnian Shobeiri
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Anthony James
- Highfield Family and Adolescent Unit, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
- Departments of Neurology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Leveraging manifold learning techniques to explore white matter anomalies: An application of the TractLearn pipeline in epilepsy. Neuroimage Clin 2022; 36:103209. [PMID: 36162235 PMCID: PMC9668609 DOI: 10.1016/j.nicl.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
An accurate description of brain white matter anatomy in vivo remains a challenge. However, technical progress allows us to analyze structural variations in an increasingly sophisticated way. Current methods of processing diffusion MRI data now make it possible to correct some limiting biases. In addition, the development of statistical learning algorithms offers the opportunity to analyze the data from a new perspective. We applied newly developed tractography models to extract quantitative white matter parameters in a group of patients with chronic temporal lobe epilepsy. Furthermore, we implemented a statistical learning workflow optimized for the MRI diffusion data - the TractLearn pipeline - to model inter-individual variability and predict structural changes in patients. Finally, we interpreted white matter abnormalities in the context of several other parameters reflecting clinical status, as well as neuronal and cognitive functioning for these patients. Overall, we show the relevance of such a diffusion data processing pipeline for the evaluation of clinical populations. The "global to fine scale" funnel statistical approach proposed in this study also contributes to the understanding of neuroplasticity mechanisms involved in refractory epilepsy, thus enriching previous findings.
Collapse
|
5
|
Wang L, Cai XT, Zu MD, Zhang J, Deng ZR, Wang Y. Decreased Resting-State Functional Connectivity of Periaqueductal Gray in Temporal Lobe Epilepsy Comorbid With Migraine. Front Neurol 2021; 12:636202. [PMID: 34122295 PMCID: PMC8189422 DOI: 10.3389/fneur.2021.636202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Patients with temporal lobe epilepsy (TLE) are at high risk for having a comorbid condition of migraine, and these two common diseases are proposed to have some shared pathophysiological mechanisms. Our recent study indicated the dysfunction of periaqueductal gray (PAG), a key pain-modulating structure, contributes to the development of pain hypersensitivity and epileptogenesis in epilepsy. This study is to investigate the functional connectivity of PAG network in epilepsy comorbid with migraine. Methods: Thirty-two patients with TLE, including 16 epilepsy patients without migraine (EwoM) and 16 epilepsy patients with comorbid migraine (EwM), and 14 matched healthy controls (HCs) were recruited and underwent resting functional magnetic resonance imaging (fMRI) scans to measure the resting-state functional connectivity (RsFC) of PAG network. The frequency and severity of migraine attacks were assessed using the Migraine Disability Assessment Questionnaire (MIDAS) and Visual Analog Scale/Score (VAS). In animal experiments, FluoroGold (FG), a retrograde tracing agent, was injected into PPN and its fluorescence detected in vlPAG to trace the neuronal projection from vlPAG to PPN. FG traced neuron number was used to evaluate the neural transmission activity of vlPAG-PPN pathway. The data were processed and analyzed using DPARSF and SPSS17.0 software. Based on the RsFC finding, the excitatory transmission of PAG and the associated brain structure was studied via retrograde tracing in combination with immunohistochemical labeling of excitatory neurons. Results: Compared to HCs group, the RsFC between PAG and the left pedunculopontine nucleus (PPN), between PAG and the corpus callosum (CC), was decreased both in EwoM and EwM group, while the RsFC between PAG and the right PPN was increased only in EwoM group but not in EwM group. Compared to EwoM group, the RsFC between PAG and the right PPN was decreased in EwM group. Furthermore, the RsFC between PAG and PPN was negatively correlated with the frequency and severity of migraine attacks. In animal study, a seizure stimulation induced excitatory transmission from PAG to PPN was decreased in rats with chronic epilepsy as compared to that in normal control rats. Conclusion: The comorbidity of epilepsy and migraine is associated with the decreased RsFC between PAG and PPN.
Collapse
Affiliation(s)
- Long Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, The Second People Hospital of Hefei, Hefei, China
| | - Xin-Ting Cai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei-Dan Zu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Ru Deng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Owen TW, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Multivariate white matter alterations are associated with epilepsy duration. Eur J Neurosci 2021; 53:2788-2803. [PMID: 33222308 PMCID: PMC8246988 DOI: 10.1111/ejn.15055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023]
Abstract
Previous studies investigating associations between white matter alterations and duration of temporal lobe epilepsy (TLE) have shown differing results, and were typically limited to univariate analyses of tracts in isolation. In this study, we apply a multivariate measure (the Mahalanobis distance), which captures the distinct ways white matter may differ in individual patients, and relate this to epilepsy duration. Diffusion MRI, from a cohort of 94 subjects (28 healthy controls, 33 left-TLE and 33 right-TLE), was used to assess the association between tract fractional anisotropy (FA) and epilepsy duration. Using ten white matter tracts, we analysed associations using the traditional univariate analysis (z-scores) and a complementary multivariate approach (Mahalanobis distance), incorporating multiple white matter tracts into a single unified analysis. For patients with right-TLE, FA was not significantly associated with epilepsy duration for any tract studied in isolation. For patients with left-TLE, the FA of two limbic tracts (ipsilateral fornix, contralateral cingulum gyrus) were significantly negatively associated with epilepsy duration (Bonferonni corrected p < .05). Using a multivariate approach we found significant ipsilateral positive associations with duration in both left, and right-TLE cohorts (left-TLE: Spearman's ρ = 0.487, right-TLE: Spearman's ρ = 0.422). Extrapolating our multivariate results to duration equals zero (i.e., at onset) we found no significant difference between patients and controls. Associations using the multivariate approach were more robust than univariate methods. The multivariate Mahalanobis distance measure provides non-overlapping and more robust results than traditional univariate analyses. Future studies should consider adopting both frameworks into their analysis in order to ascertain a more complete understanding of epilepsy progression, regardless of laterality.
Collapse
Affiliation(s)
- Thomas W. Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
| | - Sjoerd B. Vos
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- Department of MedicineDivision of NeurologyQueen's UniversityKingstonCanada
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
7
|
Wang S, Zhao M, Li T, Zhang C, Zhou J, Wang M, Wang X, Ma K, Luan G, Guan Y. Long-term efficacy and cognitive effects of bilateral hippocampal deep brain stimulation in patients with drug-resistant temporal lobe epilepsy. Neurol Sci 2021; 42:225-233. [PMID: 32632633 DOI: 10.1007/s10072-020-04554-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Temporal lobe epilepsy patients treated with hippocampal deep brain stimulation (Hip-DBS) have rarely been reported before. Preoperative and postoperative cognitive function is seldom analyzed. METHODS Seven patients with drug-resistant temporal lobe epilepsy were included in this study. Bilateral Hip-DBS was performed in these patients. The stimulator was activated 1 month after the implantation. Then, the patients returned for further adjustments 4 months after the surgery and reprogramming every year. The seizure frequency, Wechsler Adult Intelligence Scale-IV, and Wechsler memory scale-IV were assessed blindly as the outcomes at each follow-up. RESULTS After a mean 48-month follow-up, the mean seizure frequency significantly decreased (p = 0.011, paired t test; decrease of 78.1%). One patient (14.3%) was seizure-free by the last follow-up; six of seven (85.7%) patients had reductions in seizure frequency of at least 50%; one patient (14.3%) who did not comply with the antiepileptic drug instructions had a less than 50% reduction in seizure frequency. In addition, there were no significant decreases in intelligence or verbal and visual memory from baseline to the last follow-up (p = 0.736, paired t test; p = 0.380, paired t test, respectively). CONCLUSION Hip-DBS could provide acceptable long-term efficacy and safety. For patients with drug-resistant temporal lobe epilepsy who are not suitable for resective surgery, Hip-DBS could become a potential therapeutic option.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Meng Zhao
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China
| | - Chunsheng Zhang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyang Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Kaiqiang Ma
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|