1
|
Dullea JT, Chaluts D, Vasan V, Rutland JW, Gill CM, Ellis E, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. NF2 mutation associated with accelerated time to recurrence for older patients with atypical meningiomas. Br J Neurosurg 2025; 39:173-179. [PMID: 37096420 PMCID: PMC10598238 DOI: 10.1080/02688697.2023.2204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/01/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Meningiomas occur more frequently in older adults, with the incidence rates increasing from 5.8/100,000 for adults 35-44 years old to 55.2/100,000 for those 85+. Due to the increased risk of surgical management in older adults, there is a need to characterize the risk factors for aggressive disease course to inform management decisions in this population. We therefore sought to determine age-stratified relationships between tumour genomics and recurrence after resection of atypical meningiomas. METHODS We identified 137 primary and recurrent Grade 2 meningiomas from our existing meningioma genomic sequencing database. We examined the differential distribution of genomic alterations in those older than 65 compared to younger. We then performed an age stratified survival analysis to model recurrence for a mutation identified as differentially present. RESULTS In our cohort of 137 patients with grade 2 meningiomas, alterations in NF2 were present at a higher rate in older adults compared to younger (37.8% in < 65 vs. 55.3% in > 65; recurrence adjusted p-value =0.04). There was no association between the presence of NF2 and recurrence in the whole cohort. In the age-stratified model for those less than 65 years old, there was again no relationship. For patients in the older age stratum, there is a relationship between NF2 and worsened recurrence outcomes (HR = 3.64 (1.125 - 11.811); p = 0.031). CONCLUSIONS We found that mutations in NF2 were more common in older adults. Further, the presence of mutant NF2 was associated with an increased risk of recurrence in older adults.
Collapse
Affiliation(s)
- Jonathan T. Dullea
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Danielle Chaluts
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - John W. Rutland
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Corey M. Gill
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Russell B. McBride
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
- The Institute for Translational Epidemiology, Icahn School
of Medicine at Mount Sinai, New York, NY
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY
- Sema4, A Mount Sinai venture, Stamford, CT
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Raj K. Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| |
Collapse
|
2
|
Zheng J, Deng Y, Huang B, Chen X. Prognostic implications of STK11 with different mutation status and its relationship with tumor-infiltrating immune cells in non-small cell lung cancer. Front Immunol 2024; 15:1387896. [PMID: 38736875 PMCID: PMC11082287 DOI: 10.3389/fimmu.2024.1387896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.
Collapse
Affiliation(s)
- Jianqing Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bifen Huang
- Department of Obstetrics and Gynecology, Quanzhou Medical College People’s Hospital Affiliated, Quanzhou, Fujian, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Interdisciplinary Institute of Medical Engineering of Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Taher MM, Ashour KM, Althaqafi BA, Mansouri A, Al-Harbi AA, Filfilan W, Bakhsh GY, Bantan NA, Saeed M, AlQuthami K. Next-Generation DNA Sequencing of Grade 1 Meningioma Tumours: A Case Report of Angiomatous and Psammomatous Meningiomas. Cureus 2024; 16:e54009. [PMID: 38476782 PMCID: PMC10929682 DOI: 10.7759/cureus.54009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
We performed the next-generation sequencing (NGS) analysis of a rare grade 1 brain meningioma (angiomatous type) and a common grade 1 spinal meningioma (psammomatous type) and compared their mutation profiling. The data were analysed using the Ion Reporter 5.16 programme (Thermo Fisher Scientific, Waltham, MA). Sequencing analysis identified 10 novel variants and two previously reported variants that were common between these two tumours. Nine variants were missense, which included an insertion in EGFR c.1819_1820insCA, causing frameshifting, and a single nucleotide deletion in HRAS and HNF1A genes, causing frameshifting in these genes. These were common variants identified for both tumours. Also, 10 synonymous variants and 10 intronic variants were common between these two tumours. In intronic variants, two were splice site_5' variants (acceptor site variants). Typical of the angiomatous type tumour, there were 11 novel and six previously reported variants that were not found in the psammomatous tumour; three variants were synonymous, 11 were missense mutations, and three were deletions causing frameshifting. The deletion variants were in the SMARCB1, CDH1, and KDR genes. In contrast, eight novel and five previously reported variants were found in the psammomatous meningioma tumour. In this tumour, two variants were synonymous: a deletion causing a frameshifting in [(c.3920delT; p. (Ile1307fs)], and a two-base pair insertion and deletion (INDEL) [(c.3986_3987delACinsGT; p. (His1329Arg)] both in the APC gene were also found. Among our findings, we have identified that ALK, VHL, CTNNB1, EGFR, ERBB4, PDGFRA, KDR, SMO, ABL1, HRAS, ATM, HNF1A, FLT3, and RB1 mutations are common for psammomatous meningioma and angiomatous tumours. Variants typical for angiomatous (brain) meningioma are PIK3CA, KIT, PTPN11, CDH1, SMAD4, and SMARCB1; the variants typical for psammomatous meningioma are APC, FGFR2, HNF1A, STK11, and JAK3. The RET splice variant (c.1880-2A>C) found in both meningioma tumours is reported (rs193922699) as likely pathogenic in the Single Nucleotide Polymorphism Database (dbSNP). All missense variants detected in these two meningiomas are found in the cancer-driver genes. The eight variants we found in genes such as EGFR, PDGFRA, SMO, FLT3, PIK3CA, PTPN11, CDH1, and RB1 are glioma-driver genes. We did not find any mutations in genes such as BRAF, IDH1, CDKN2A, PTEN, and TP53, which are also listed as cancer-driver genes in gliomas. Mutation profiling utilising NGS technology in meningiomas could help in the accurate diagnosis and classification of these tumours and also in developing more effective treatments.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Science and Technology Unit and Deanship of Scientific Research, Umm Al-Qura University, Makkah, SAU
- Medical Genetics, Umm Al-Qura University, Makkah, SAU
| | - Khalid M Ashour
- Neurological Surgery, Alexandria University, Alexandria, EGY
- Neurosurgery, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | | | - Albatool Mansouri
- Neurosurgey, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | | | - Weam Filfilan
- Pathology and Laboratory Medicine, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Ghassan Y Bakhsh
- General Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Makkah, SAU
| | - Najwa A Bantan
- Radiology, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Muhammad Saeed
- Radiology, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Khalid AlQuthami
- Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| |
Collapse
|
4
|
Chaluts D, Dullea JT, Ali M, Vasan V, Devarajan A, Rutland JW, Gill CM, Ellis E, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. ARID1A mutation associated with recurrence and shorter progression-free survival in atypical meningiomas. J Cancer Res Clin Oncol 2023; 149:5165-5172. [PMID: 36348021 DOI: 10.1007/s00432-022-04442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The oncologic outcomes for atypical meningiomas can be poor. Generally, patients that have had a prior recurrence have a substantially elevated risk of a future recurrence. Additionally, certain tumor genomic profiles have been shown as markers of poor prognosis. We sought to characterize the genomic differences between primary and recurrent tumors as well as assess if those differences had implications on recurrence. METHODS We identified primary and recurrent gross totally resected WHO grade II meningiomas with > 30 days of post-surgical follow-up at our institution. For genes with a prevalence of > 5% in the cohort, we compared the mutational prevalence in primary and recurrent tumors. For a gene of interest, we assessed the time to radiographic recurrence using adjusted cox-regression. RESULTS We identified 88 meningiomas (77 primary, 16 recurrent) with a median follow-up of 5.33 years. Mutations in ARID1A found in association with recurrent tumors (7/16 recurrent tumors vs 5/72 primary tumors, p < 0.001). In the whole cohort, mutations in ARID1A were not associated with alterations in time to recurrence after adjusting for recurrence status (p = 0.713). When restricted to primary tumors, ARID1A is associated with a 625% increase in the hazard of recurrence (HR = 7.26 [1.42-37.0]; p = 0.017). CONCLUSION We demonstrate mutations in ARID1A, a chromatin remodeling gene, in a higher prevalence in recurrent tumors. We further demonstrate that when mutations in ARID1A are present in primary atypical meningiomas, these tumors tend to have worse prognosis. Further prospective study may validate ARID1A as a prognostic marker.
Collapse
Affiliation(s)
- Danielle Chaluts
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA.
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Ethan Ellis
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| |
Collapse
|
5
|
Vasan V, Dullea JT, Devarajan A, Ali M, Rutland JW, Gill CM, Kinoshita Y, McBride RB, Gliedman P, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. NF2 mutations are associated with resistance to radiation therapy for grade 2 and grade 3 recurrent meningiomas. J Neurooncol 2023; 161:309-316. [PMID: 36436149 DOI: 10.1007/s11060-022-04197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE High grade meningiomas have a prognosis characterized by elevated recurrence rates and radiation resistance. Recent work has highlighted the importance of genomics in meningioma prognostication. This study aimed to assess the relationship between the most common meningioma genomic alteration (NF2) and response to postoperative radiation therapy (RT). METHODS From an institutional tissue bank, grade 2 and 3 recurrent meningiomas with both > 30 days of post-surgical follow-up and linked targeted next-generation sequencing were identified. Time to radiographic recurrence was determined with retrospective review. The adjusted hazard of recurrence was estimated using Cox-regression for patients treated with postoperative RT stratified by NF2 mutational status. RESULTS Of 53 atypical and anaplastic meningiomas (29 NF2 wild-type, 24 NF2 mutant), 19 patients underwent postoperative RT. When stratified by NF2 wild-type, postoperative RT in NF2 wild-type patients was associated with a 78% reduction in the risk of recurrence (HR 0.216; 95%CI 0.068-0.682; p = 0.009). When stratified by NF2 mutation, there was a non-significant increase in the risk of recurrence for NF2 mutant patients who received postoperative RT compared to those who did not (HR 2.43; 95%CI 0.88-6.73, p = 0.087). CONCLUSION This study demonstrated a protective effect of postoperative RT in NF2 wild-type patients with recurrent high grade meningiomas. Further, postoperative RT may be associated with no improvement and perhaps an accelerated time to recurrence in NF2 mutant tumors. These differences in recurrence rates provide evidence that NF2 may be a valuable prognostic marker in treatment decisions regarding postoperative RT. Further prospective studies are needed to validate this relationship.
Collapse
Affiliation(s)
- Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA.
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Gliedman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Dullea JT, Vasan V, Rutland JW, Gill CM, Chaluts D, Ranti D, Ellis E, Subramanium V, Arrighi-Allisan A, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. Association between tumor mutations and meningioma recurrence in Grade I/II disease. Oncoscience 2022; 9:70-81. [PMID: 36514795 PMCID: PMC9733702 DOI: 10.18632/oncoscience.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Meningiomas are common intracranial tumors with variable prognoses not entirely captured by commonly used classification schemes. We sought to determine the relationship between meningioma mutations and oncologic outcomes using a targeted next-generation sequencing panel. MATERIALS AND METHODS We identified 184 grade I and II meningiomas with both >90 days of post-surgical follow-up and linked targeted next-generation sequencing. For mutated genes in greater than 5% of the sample, we computed progression-free survival Cox-regression models stratified by gene. We then built a multi-gene model by including all gene predictors with a p-value of less than 0.20. Starting with that model, we performed backward selection to identify the most predictive factors. RESULTS ATM (HR = 4.448; 95% CI: 1.517-13.046), CREBBP (HR = 2.727; 95% CI = 1.163-6.396), and POLE (HR = 0.544; HR = 0.311-0.952) were significantly associated with alterations in disease progression after adjusting for clinical and pathologic factors. In the multi-gene model, only POLE remained a significant predictor of recurrence after adjusting for the same clinical covariates. Backwards selection identified recurrence status, resection extent, and mutations in ATM (HR = 7.333; 95% CI = 2.318-23.195) and POLE (HR = 0.413; 95% CI = 0.229-0.743) as predictive of recurrence. CONCLUSIONS Mutations in ATM and CREBBP were associated with accelerated meningioma recurrence, and mutations in POLE were protective of recurrence. Each mutation has potential implications for treatment. The effect of these mutations on oncologic outcomes and as potential targets for intervention warrants future study.
Collapse
Affiliation(s)
- Jonathan T. Dullea
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,Correspondence to:Jonathan T. Dullea, email:
| | - Vikram Vasan
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - John W. Rutland
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Corey M. Gill
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Danielle Chaluts
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Daniel Ranti
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Ethan Ellis
- 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Varun Subramanium
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Annie Arrighi-Allisan
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Yayoi Kinoshita
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Russell B. McBride
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,3The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Joshua Bederson
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Michael Donovan
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Robert Sebra
- 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,5Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Melissa Umphlett
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Raj K. Shrivastava
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| |
Collapse
|
7
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK-positive non-small cell lung cancer. Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yong-Hua Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
8
|
Rutland JW, Dullea JT, Gill CM, Chaluts D, Ranti D, Ellis E, Arrighi-Allisan A, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Fowkes M, Umphlett M, Shrivastava RK. Association of mutations in DNA polymerase epsilon with increased CD8+ cell infiltration and prolonged progression-free survival in patients with meningiomas. Neurosurg Focus 2022; 52:E7. [PMID: 35104796 DOI: 10.3171/2021.11.focus21592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prior studies have demonstrated a relationship between underlying tumor genetics and lymphocyte infiltration in meningiomas. In this study, the authors aimed to further characterize the relationship between meningioma genomics, CD4+ and CD8+ T-cell infiltration, and oncological outcomes of meningiomas. Understanding specific characteristics of the inflammatory infiltration could have implications for treatment and prognostication. METHODS Immunohistochemically stained meningioma slides were reviewed to assess the CD4+ and CD8+ cell infiltration burden. The relationship between immune cell infiltration and tumor genomics was then assessed using an adjusted ANOVA model. For a specific gene identified by the ANOVA, the relationship between that mutation and tumor recurrence was assessed using Cox regression. RESULTS In immunohistochemically stained samples from a subcohort of 25 patients, the mean number of CD4+ cells was 42.2/400× field and the mean number of CD8+ cells was 69.8/400× field. Elevated CD8+ cell infiltration was found to be associated with the presence of a mutation in the gene encoding for DNA polymerase epsilon, POLE (51.6 cells/hpf in wild-type tumors vs 95.9 cells/hpf in mutant tumors; p = 0.0199). In a retrospective cohort of 173 patients, the presence of any mutation in POLE was found to be associated with a 46% reduction in hazard of progression (HR 0.54, 95% CI 0.311-0.952; p = 0.033). The most frequent mutation was a near-C-terminal nonsense mutation. CONCLUSIONS A potential association was found between mutant POLE and both an increase in CD8+ cell infiltration and progression-free survival. The predominant mutation was found outside of the known exonuclease hot spot; however, it was still associated with a slight increase in mutational burden, CD8+ cell infiltration, and progression-free survival. Alterations in gene expression, resulting from alterations in POLE, may yield an increased presentation of neoantigens, and, thus, greater CD8+ cell-mediated apoptosis of neoplastic cells. These findings have suggested the utility of checkpoint inhibitors in the treatment of POLE-mutant meningiomas.
Collapse
Affiliation(s)
- John W Rutland
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Jonathan T Dullea
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Corey M Gill
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Danielle Chaluts
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Daniel Ranti
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Ethan Ellis
- 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
| | | | - Yayoi Kinoshita
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Russell B McBride
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai.,4The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Joshua Bederson
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Michael Donovan
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Robert Sebra
- 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai.,5Sema4, A Mount Sinai venture, Stamford, Connecticut
| | - Mary Fowkes
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Melissa Umphlett
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Raj K Shrivastava
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
9
|
SWI/SNF chromatin remodeling complex alterations in meningioma. J Cancer Res Clin Oncol 2021; 147:3431-3440. [PMID: 33715086 DOI: 10.1007/s00432-021-03586-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE While SWI/SNF chromatin remodeling complex alterations occur in approximately 20% of cancer, the frequency and potential impact on clinical outcomes in meningiomas remains to be comprehensively elucidated. METHODS A large series of 255 meningiomas from a single institution that was enriched for high grade and recurrent lesions was identified. We performed next-generation targeted sequencing of known meningioma driver genes, including NF2, AKT1, PIK3CA, PIK3R1, and SMO and SWI/SNF chromatin remodeling complex genes, including ARID1A, SMARCA4, and SMARCB1 in all samples. Clinical correlates focused on clinical presentation and patient outcomes are presented. RESULTS The series included 63 grade I meningiomas and 192 high-grade meningiomas, including 173 WHO grade II and 19 WHO grade III. Samples from recurrent surgeries comprised 37.3% of the series. A total of 41.6% meningiomas were from the skull base. NF2, AKT1, PIK3CA, PIK3R1, and SMO were mutated in 40.8, 7.1, 3.5, 3.9, and 2.4% of samples, respectively. ARID1A, SMARCA4, and SMARCB1 mutations were observed in 17.3, 3.5, and 5.1% of samples, respectively. A total of 68.2% of ARID1A-mutant meningiomas harbored a p.Gln1327del in-frame deletion. ARID1A mutations were seen in 19.1% of Grade I, 16.8% of Grade II, and 15.8% of Grade III meningiomas (P = 0.9, Fisher's exact). Median overall survival was 16.3 years (95% CI 10.9, 16.8). With multivariable analysis, the presence of an ARID1A mutation was significantly associated with a 7.421-fold increased hazard of death (P = 0.04). CONCLUSION ARID1A mutations occur with similar frequency between low and high-grade meningiomas, but ARID1A mutations are independently prognostic of worse prognosis beyond clinical and histopathologic features.
Collapse
|
10
|
NF2 mutation status and tumor mutational burden correlate with immune cell infiltration in meningiomas. Cancer Immunol Immunother 2020; 70:169-176. [PMID: 32661686 DOI: 10.1007/s00262-020-02671-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The tumor microenvironment is an emerging biomarker of underlying genomic heterogeneity and response to immunotherapy-based treatment regimens in solid malignancies. How tumor mutational burden influences the density, distribution, and presence of a localized immune response in meningiomas is unknown. METHODS Representative hematoxylin and eosin slides were reviewed at 40X to assess for the density of inflammatory cells. Lymphocytes and macrophages were quantified in the following ordinal manner: 0 = not present, 1 = 1-25 cells present, and 2 = greater than 26 cells present. Immune cell infiltrate grade was scored for both scattered and aggregated distributions. Next generation targeted sequencing was performed on all meningiomas included in this study. RESULTS One hundred and forty-five meningiomas were evaluated in this study. Lymphocytes were observed in both scattered (95.9%) and aggregated (21.4%) distributions. A total of 115 (79.3%) meningiomas had 1-25 scattered lymphocytes, and 24 (16.6%) had > 25 scattered lymphocytes, and 6 (4.1%) had no scattered lymphocytes. Twenty (13.8%) meningiomas had 1-25 aggregated lymphocytes. Eleven (7.6%) had > 25 aggregated lymphocytes and 114 (78.6%) had no aggregated lymphocytes. Six (4.1%) meningiomas had 1-25 aggregated macrophages, 5 (3.4%) had > 25 aggregated macrophages, and 134 (92.4%) had no aggregated macrophages. Density of aggregated lymphocytes and aggregated macrophages were associated with higher tumor grade, P = 0.0071 and P = 0.0068, respectively. Scattered lymphocyte density was not associated with meningioma grade. The presence of scattered lymphocytes was associated with increased tumor mutational burden. Meningiomas that did not have scattered lymphocytes had a mean number of single mutations of 2.3 ± 2.9, compared with meningiomas that had scattered lymphocytes, 6.9 ± 20.3, P = 0.03. NF2 mutations were identified in 59 (40.7%) meningiomas and were associated with increased density of scattered lymphocytes. NF2 mutations were seen in 0 (0%) meningiomas that did not have scattered lymphocytes, 46 (40.0%) meningiomas that had 1-25 scattered lymphocytes, and 13 (54.2%) meningiomas that had > 25 scattered lymphocytes, P = 0.046. CONCLUSIONS Our findings suggest that distribution of immune cell infiltration in meningiomas is associated with tumor mutational burden. NF2 mutational status was associated with an increasing density of scattered lymphocytes. As the role of immunotherapy in meningiomas continues to be elucidated with clinical trials that are currently underway, these results may serve as a novel biomarker of tumor mutational burden in meningiomas.
Collapse
|