1
|
Shu X, Cai F, Li W, Shen H. Copeptin as a diagnostic and prognostic biomarker in pediatric diseases. Clin Chem Lab Med 2025; 63:483-498. [PMID: 39165044 DOI: 10.1515/cclm-2024-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Arginine vasopressin (AVP) plays a main role in maintaining the homeostasis of fluid balance and vascular tone and in regulating the endocrine stress response in response to osmotic, hemodynamic and stress stimuli. However, the difficulty in measuring AVP limits its clinical application. Copeptin, the C-terminal part of the AVP precursor, is released in an equimolar concentration mode with AVP from the pituitary but is more stable and simple to measure. Therefore, copeptin has emerged as a promising surrogate marker of AVP with excellent potential for the diagnosis, differentiation and prognosis of various diseases in recent decades. However, its application requires further validation, especially in the pediatric population. This review focuses on the clinical value of copeptin in different pediatric diseases and the prospects for its application as a potential biomarker.
Collapse
Affiliation(s)
- Xiaoli Shu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
2
|
Kalogirou E, Voulgaris S, Alexiou GA. Coagulopathy prediction in traumatic brain injury. Adv Clin Chem 2025; 126:199-231. [PMID: 40185535 DOI: 10.1016/bs.acc.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Traumatic brain injury (TBI) represents a significant public health concern. Besides the initial primary injury, a defining point of TBI is causing secondary, delayed damage through inflammatory biochemical processes. Among the complications arising from this inflammatory response, coagulopathy emerges as a critical concern. With an overall prevalence of 32.7 %, TBI-induced coagulopathy significantly contributes to increased mortality rates and unfavorable patient outcomes, through its clinical manifestations, such as progressive hemorrhagic injury (PHI). This chapter investigates biomarkers capable of accurately detecting coagulopathy and PHI in TBI, evaluating their potential utility based on statistical evidence from various studies and exploring their possible association in the biochemical processes guiding or following TBI-induced coagulopathy. Notably, glucose emerges as a standout candidate, exhibiting a sensitivity of 91.5 % and specificity of 87.5 % for predicting coagulopathy. Furthermore, interleukin-33, with a sensitivity of 93.3 % and specificity of 66.7 %, and galectin-3, with a sensitivity of 67.7 % and specificity of 85.5 %, are promising for PHI. Despite these encouraging findings, significant efforts remain necessary to translate biomarker diagnostic utility into clinical practice effectively. Further research and validation studies are imperative to elucidate the intricate biochemical processes underlying TBI-induced coagulopathy and to refine the clinical application of biomarkers for improved patient management and outcomes in real-world settings.
Collapse
Affiliation(s)
- Evangelos Kalogirou
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina Greece
| | - Spyridon Voulgaris
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina Greece
| | - George A Alexiou
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina Greece.
| |
Collapse
|
3
|
Li C, Chen P, Deng Y, Xia L, Wang X, Wei M, Wang X, Dong L, Zhang J. Abnormalities of cortical and subcortical spontaneous brain activity unveil mechanisms of disorders of consciousness and prognosis in patients with severe traumatic brain injury. Int J Clin Health Psychol 2024; 24:100528. [PMID: 39659957 PMCID: PMC11629552 DOI: 10.1016/j.ijchp.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To investigate the spatial distribution characteristics of alterations in spontaneous brain activity in severe traumatic brain injury (sTBI) patients with disorders of consciousness (DOC), based on the mesocircuit theoretical framework, and to establish models for predicting recovery of consciousness. Methods Resting-state functional magnetic resonance imaging was employed to measure the mean fractional amplitude of low-frequency fluctuations (mfALFF) in sTBI patients with DOC and healthy controls, identifying differential brain regions for conducting gene and functional decoding analyses. Patients were classified into wake and DOC groups according to Extended Glasgow Outcome Score at 6 months. Furthermore, predictive models for consciousness recovery were developed using Nomogram and Linear Support Vector Machine (LSVM) based on mfALFF. Results In total, 28 sTBI patients with DOC and 30 healthy controls were included, with no significant baseline differences between groups (P > 0.05). The results revealed increased mfALFF of subcortical Ascending Reticular Activating System and decreased cortical mfALFF (default mode network) in DOC patients within the framework of the mesocircuit model (FDR_P < 0.001, Clusters > 100). The study identified 2080 differentially expressed genes associated with reduced brain activity regions, indicating mechanisms involving synaptic function, the oxytocin signaling pathway, and GABAergic processes in DOC formation. In addition, significantly higher mfALFF values were observed in the left angular gyrus, supramarginal gyrus, and inferior parietal lobule of DOC group compared to the wake group (AlphaSim_P < 0.01, Cluster > 19). The Nomogram prediction model highlighted the pivotal role of these regions' activity levels in prognosis (AUC = 0.90). Validation using LSVM demonstrated robust predictive performance with an AUC of 0.90 and positive predictive values of 80% for wake and 83% for DOC. Conclusions This study offered crucial insights underlying DOC in sTBI patients, demonstrating the dissociation between cortical and subcortical brain activities. The findings supported the use of mfALFF as a robust and non-invasive biomarker for evaluating brain function and predicting recovery outcomes.
Collapse
Affiliation(s)
- Chang Li
- Medical Imaging Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Lei Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Jun Zhang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
4
|
Săcărescu A, Pleşca IC, Turliuc MD. Copeptin's role in traumatic brain injury: The promising quest for a new biomarker. Clin Neurol Neurosurg 2024; 244:108432. [PMID: 38986366 DOI: 10.1016/j.clineuro.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Traumatic brain injury (TBI) necessitates reliable biomarkers to improve patient care. This study explored copeptin as a potential biomarker in TBI and its relation to vasopressin (ADH) in such patients. METHODS A cross-sectional study was conducted on 50 TBI patients. Exclusion criteria included specific medical conditions and recent traumatic events. Copeptin and ADH testing were performed within 30 days post-trauma. Patient data, Glasgow Coma Scale (GCS) scores, imaging results, and the need for surgical intervention were obtained from medical charts. RESULTS Copeptin levels negatively correlated with GCS scores (ρ = - 0.313, p = 0.027), indicating a potential association with trauma severity. Copeptin levels (mean: 3.22 pmol/L, median 2.027 pmol/L, SD = 3.15) tended to be lower than those found in the normal population, suggesting possible neuroendocrine dysfunction post-TBI. ADH levels (mean: 67.93 pmol/L, median 56.474 pmol/L SD = 47.67) were higher than the normal range and associated with the need for surgery (p = 0.048). Surprisingly, copeptin and ADH levels negatively correlated (r = - 0.491; p < 0.001), potentially due to differences in degradation processes and physiological variations in TBI patients. CONCLUSION Copeptin shows potential as a predictive biomarker for assessing TBI severity and predicting patient outcome. However, its complex relationship with ADH in TBI requires further investigation. Careful interpretation is needed due to potential variations in excretion dynamics and metabolism. Larger studies on TBI patient cohorts are essential to validate copeptin as a reliable biomarker and improve patient care in TBI.
Collapse
Affiliation(s)
- Alina Săcărescu
- Department of Medical Specialties III, "Grigore T. Popa" University of Medicine and Pharmacy, Universității 16, Iași 700115, Romania; Department of Neurology, Clinical Rehabilitation Hospital, Pantelimon Halipa 14, Iași 700661, Romania.
| | - Iulia-Cătălina Pleşca
- Faculty of Mathematics, "Alexandru Ioan Cuza" University, Bulevardul Carol I 11, Iași 700506, Romania
| | - Mihaela-Dana Turliuc
- Department of Surgery II, "Grigore T. Popa" University of Medicine and Pharmacy, Universității 16, Iași 700115, Romania; Department of Neurosurgery I, "Prof. Dr. N. Oblu" Clinical Emergency Hospital, Ateneului 2, Iași 700309, Romania
| |
Collapse
|
5
|
Sarkarinejad A, Paydar S, Khosrojerdi A, Hosseini M. Copeptin: a novel prognostic biomarker in trauma: a review article. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:128. [PMID: 37986111 PMCID: PMC10662502 DOI: 10.1186/s41043-023-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Trauma has a significant impact on the overall health of individuals worldwide, being a leading cause of morbidity and mortality with long-lasting effects. The identification of suitable biomarkers is crucial to predict patient outcomes, providing information about the severity of a condition or the probability of a specific outcome. Hence, in this study, we addressed a new biomarker, copeptin, and discussed its prognostic roles in various trauma researches. MAIN BODY Copeptin is a peptide derived from the precursor of the hormone vasopressin, which is released in response to stress. Copeptin can serve as a valuable biomarker for determining the severity, prognosis, and outcome of trauma patients. Elevated levels of copeptin are associated with increased mortality and poor clinical outcomes in patients with severe injuries or bleeding. Implementing copeptin measurements in clinical practice can enable healthcare providers to more accurately gauge the degree of trauma and predict patient mortality and morbidity outcomes facilitating prompt interventions and personalized treatment. CONCLUSION The measurement of novel biomarker copeptin can serve as a prognostic molecule for further outcomes in trauma patients. Nevertheless, supplementary research is needed to fully comprehend its role in the development and progression of traumatic injuries.
Collapse
Affiliation(s)
- Artin Sarkarinejad
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Hosseini
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Lanzilao L, Bianchi I, Grassi S, Defraia B, Brogi M, Da Ros M, Biagioli T, Fanelli A, Pinchi V, Focardi M. Biomarkers of traumatic brain injury in vitreous humor: A pilot study. Forensic Sci Int 2023; 350:111782. [PMID: 37467521 DOI: 10.1016/j.forsciint.2023.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality worldwide. The patients' and injuries' heterogeneity associated with TBI, alongside with its variable clinical manifestations, make it challenging to make diagnosis and predict prognosis. Therefore, the identification of reliable prognostic markers would be relevant both to support clinical decision-making and forensic evaluation of polytraumatic deaths and cases of medical malpractice. This pilot study aimed to evaluate some of the main biomarkers specific for brain damage in sTBI and mmTBI deaths in samples of vitreous humor (VH) in order to verify whether predictors of prognosis in TBI can be found in this matrix. METHODS VH were obtained from both eyes (right and left) of 30 cadavers (20 sTBI and 10 mmTBI) and analysed. These factors were evaluated: NSE (neuron-specific enolase), S100 calcium-binding protein (S100), glial fibrillary acidic protein (GFAP), Brain-derived neurotrophic factor (BDNF), Copeptin, Interleukin 6 (IL-6), Ferritin, Lactate dehydrogenase (LDH), C-Reactive Protein (CRP), Procalcitonin (PCT), Glucose and Neutrophil gelatinase-associated lipocalin (N-Gal). RESULTS Four of the analysed proteins (LDH, ferritin, S100 and NSE) proved to be particularly promising. In particular, logistic regression analysis found a good discriminatory power. CONCLUSIONS Given the peculiarity of the matrix and the poor standardization of the sampling, such promising results need to be furtherly investigated in serum before being implemented in the forensic practice.
Collapse
Affiliation(s)
- Luisa Lanzilao
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ilenia Bianchi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Simone Grassi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Beatrice Defraia
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Marco Brogi
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Da Ros
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Tiziana Biagioli
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Fanelli
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Vilma Pinchi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Focardi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
7
|
Abdelmageed M, Güzelgül F. Copeptin: Up-to-date diagnostic and prognostic role highlight. Anal Biochem 2023:115181. [PMID: 37247750 DOI: 10.1016/j.ab.2023.115181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Arginine Vasopressin (AVP) is one of the key hormones in the human body. AVP is clinically important because it maintains body fluid balance and vascular tone. Unfortunately, AVP laboratory measurements are always difficult and with low accuracy. Copeptin, the C-terminal of the AVP precursor, is released in equal amounts with AVP, making it a sensitive marker of AVP release. Despite being a non-specific biomarker, copeptin earned a lot of attention as a novel biomarker due to easy and quick laboratory measurements. Recent studies have reported the critical role of copeptin as a clinical indicator, especially in the diagnosis and prognosis of many diseases. Besides, it was reported that the combination between copeptin and gold standard biomarkers improved the prognostic values of those biomarkers. In this review, the role of copeptin as a new predictive diagnostic and prognostic biomarker of various diseases is highlighted according to the most recent studies. In addition, the importance of using copeptin as a marker in different medical departments and the impact of this on improving healthcare service was discussed.
Collapse
Affiliation(s)
- Marwa Abdelmageed
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, Tokat City, Turkiye.
| | - Figen Güzelgül
- Tokat Gaziosmanpasa University, Faculty of Pharmacy, Department of Biochemistry, Tokat City, Turkiye.
| |
Collapse
|
8
|
Cardoso MGDF, de Barros JLVM, de Queiroz RAB, Rocha NP, Silver C, da Silva AS, da Silva EWM, Roque IG, Carvalho JDL, Dos Santos LF, Cota LB, Lemos LM, Miranda MF, Miranda MF, Vianna PP, Oliveira RA, de Oliveira Furlam T, Soares TSS, Pedroso VSP, Faleiro RM, Vieira ÉLM, Teixeira AL, de Souza LC, de Miranda LS. Potential Biomarkers of Impulsivity in Mild Traumatic Brain Injury: A Pilot Study. Behav Brain Res 2023; 449:114457. [PMID: 37116663 DOI: 10.1016/j.bbr.2023.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Very few studies have investigated cognition and impulsivity following mild traumatic brain injury (mTBI) in the general population. Furthermore, the neurobiological mechanisms underlying post-TBI neurobehavioral syndromes are complex and remain to be fully clarified. Herein, we took advantage of machine learning based-modeling to investigate potential biomarkers of mTBI-associated impulsivity. Twenty-one mTBI patients were assessed within one-month post-TBI and their data were compared to 19 healthy controls on measures of impulsivity (Barratt Impulsiveness Scale - BIS), executive functioning, episodic memory, self-report cognitive failures and blood biomarkers of inflammation, vascular and neuronal damage. mTBI patients were significantly more impulsive than controls in BIS total and subscales. Serum levels of sCD40L, Cathepsin D, IL-4, Neuropilin-1, IFN-α2, and Copeptin were associated with impulsivity in mTBI patients. Besides showing that mTBI are associated with impulsivity in non-military people, we unveiled different pathophysiological pathways potentially implicated in mTBI-related impulsivity.
Collapse
Affiliation(s)
- Maíra Glória de Freitas Cardoso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Alves Bonfim de Queiroz
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto-UFOP, Ouro Preto, MG, Brasil
| | - Natalia Pessoa Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carlisa Silver
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Agnes Stéphanie da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - Ewelin Wasner Machado da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Isadora Gonçalves Roque
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Júlia de Lima Carvalho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Laura Ferreira Dos Santos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Bitencourt Cota
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Lucas Miranda Lemos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Mariana Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Millena Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Parenti Vianna
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Arantes Oliveira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Tiago de Oliveira Furlam
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Túlio Safar Sarquis Soares
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Vinicius Sousa Pietra Pedroso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rodrigo Moreira Faleiro
- Hospital João XXIII, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG. Belo Horizonte, Minas Gerais, Brasil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Centre for Addiction and Mental Health - CAMH, Toronto, Canada
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston. Houston, Texas; Faculdade Santa Casa BH, Belo Horizonte, Brasil
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, MG, Brasil.
| | - Line Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brasil.
| |
Collapse
|
9
|
Liu Y, Yao X, Lv X, Qian J. The role of spectrin breakdown products in patients with traumatic brain injury: a systematic review and meta-analysis. Neurol Sci 2023; 44:1171-1183. [PMID: 36547778 DOI: 10.1007/s10072-022-06558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spectrin Breakdown Products (SBDPs) accumulate in the brain after traumatic brain injury (TBI) and are expected to become a potentially promising biomarker of TBI. OBJECTIVE This systematic review and meta-analysis were undertaken to evaluate the role of SBDPs in the diagnosis and prognosis of TBI. METHODS We systematically searched the following databases up to 31 October 2022: Ovid MEDLINE, PubMed, EMBASE, Cochrane Library, and Web of Science Database, and studies were only included if they had sufficient data on SBDP concentrations in TBI patients. We calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs) for continuous outcomes and assessed the potential publication bias by using Egger's test and funnel plots. The statistical analysis was conducted by RevMan 5.4 and Stata 17. RESULTS Of 1429 identified studies, 10 studies involving 417 participants were included in our systematic review and meta-analysis. The results demonstrated that serum and cerebrospinal fluid (CSF) SBDP concentrations were significantly increased in TBI compared to controls (SBDP120: SMD = 1.42, 95% CI = 0.71 ~ 2.12, P < 0.00001; SBDP145: SMD = 1.32, 95% CI = 0.78 ~ 1.86, P < 0.00001; SBDP150: SMD = 1.39, 95% CI = 0.97 ~ 1.80, P < 0.00001), and CSF SBDPs were significantly associated with poor functional outcomes (PFO) (SBDP145: SMD = 1.75, 95% CI = 1.37 ~ 2.13, P < 0.00001; SBDP150: SMD = 1.14, 95% CI = 0.75 ~ 1.52, P < 0.00001). In addition, CSF and serum SBDP145 are valuable in diagnosing TBI (AUC = 0.89, 95% CI = 0.80 ~ 0.99, P < 0.00001), and CSF SBDP145 also has diagnostic value for PFO (AUC = 0.80, 95% CI = 0.76 ~ 0.84, P < 0.00001). CONCLUSIONS The limited evidence supports that the SBDPs can be employed as potential biomarkers for the diagnosis and prognosis of TBI.
Collapse
Affiliation(s)
- Yang Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China
| | - Xiaomeng Yao
- Viterbi School of Engineering, University of Southern California, Los Angeles, LA, USA
| | - Xianglin Lv
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China
| | - Jinghua Qian
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China.
| |
Collapse
|
10
|
Review novel insights into the diagnostic and prognostic function of copeptin in daily clinical practice. Mol Biol Rep 2023; 50:3755-3765. [PMID: 36662451 PMCID: PMC9853489 DOI: 10.1007/s11033-023-08246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
As is shown in previous reports, arginine vasopressin (AVP), as one of the most important hormones within circulation in human beings, is of great clinically significance given that it could maintain the body fluid balance and vascular tone. However, the laboratory measurements AVP in daily clinical practice are shown to be difficult and with low accuracy. Concerning on this notion, it is unpractical to use the serum levels of AVP in diagnosing multiple diseases. On the other hand, another key serum biomarker, copeptin, is confirmed as the C-terminal of the AVP precursor which could be released in equal amounts with AVP, resultantly making it as a sensitive marker of arginine vasopressin release. Notably, emerging recent evidence has demonstrated the critical function of copeptin as a clinical indicator, especially in the diagnosis and prognosis of several diseases in diverse organs, such as cardiovascular disease, kidney disease, and pulmonary disease. In addition, copeptin was recently verified to play an important role in diagnosing multiple acute diseases when combined it with other gold standard serum biomarkers, indicating that copeptin could be recognized as a vital disease marker. Herein, in the current review, the functions of copeptin as a new predictive diagnostic and prognostic biomarker of various diseases, according to the most recent studies, are well summarized. Furthermore, the importance of using copeptin as a serum biomarker in diverse medical departments and the impact of this on improving healthcare service is also summarized in the current review.
Collapse
|
11
|
Jeon JP, Kim S, Kim TY, Han SW, Lim SH, Youn DH, Kim BJ, Hong EP, Park CH, Kim JT, Ahn JH, Rhim JK, Park JJ, Kim HC, Kang SH. Association Between Copeptin and Six-Month Neurologic Outcomes in Patients With Moderate Traumatic Brain Injury. Front Neurol 2022; 12:749110. [PMID: 35547639 PMCID: PMC9081440 DOI: 10.3389/fneur.2021.749110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Copeptin has been reported as a predictive biomarker for the prognosis after traumatic brain injury (TBI). However, most of them were in patients with severe TBI and limited value in predicting outcomes in patients with moderate TBI defined as Glasgow Coma Scale (GCS) score from 9 to 12. We aimed to investigate the predictive value of copeptin in assessing the neurologic outcome following moderate TBI. Methods Patients were prospectively enrolled between May 2017 and November 2020. We consecutively measured plasma copeptin within 24 h after trauma, days 3, 5, and 7 using ELISA. The primary outcome was to correlate plasma copeptin levels with poor neurologic outcome at 6 months after moderate TBI. The secondary outcome was to compare the prognostic accuracy of copeptin and C-reactive protein (CRP) in assessing the outcome of patient. Results A total of 70 patients were included for the final analysis. The results showed that 29 patients (41.4%) experienced a poor neurologic outcome at 6 months. Multivariable logistic regression analysis revealed that increased copeptin (odds ration [OR] = 1.020, 95% CI: 1.005–1.036), GCS score of 9 or 10 (OR = 4.507, 95% CI: 1.266–16.047), and significant abnormal findings on CT (OR = 4.770; 95% CI: 1.133–20.076) were independent risk factors for poor outcomes. Consecutive plasma copeptin levels were significantly different according to outcomes (p < 0.001). Copeptin on day 7 exhibited better prognostic performance than CRP with an area under receiver operating characteristic curve (AUROC) difference of 0.179 (95% CI: 0.032–0.325) in predicting 6-month poor outcomes. Conclusion Plasma copeptin level can be a useful marker in predicting 6-month outcomes in patients with moderate TBI.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seonghyeon Kim
- Department of Orthopaedic Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk Medical Center, Seoul, South Korea
| | - Heung Cheol Kim
- Department of Radioilogy, Hallym University College of Medicine, Chuncheon, South Korea
| | - Suk Hyung Kang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
12
|
Lu J, Wang H, Yang Z, Zhang E, Zhao X. Letter to the Editor Regarding “Evaluation of Prognosis in Patients with Severe Traumatic Brain Injury Using Resting-State Functional Magnetic Resonance Imaging”. World Neurosurg 2022; 158:328-330. [DOI: 10.1016/j.wneu.2021.10.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
|
13
|
Abstract
Vasopressin (AVP) and copeptin are released in equimolar amounts from the same precursor. Due to its molecular stability and countless advantages as compared with AVP, copeptin perfectly mirrors AVP presence and has progressively emerged as a reliable marker of vasopressinergic activation in response to osmotic and hemodynamic stimuli in clinical practice. Moreover, evidence highlighting the prognostic potential of copeptin in several acute diseases, where the activation of the AVP system is primarily linked to stress, as well as in psychologically stressful conditions, has progressively emerged. Furthermore, organic stressors induce a rise in copeptin levels which, although non-specific, is unrelated to plasma osmolality but proportional to their magnitude: suggesting disease severity, copeptin proved to be a reliable prognostic biomarker in acute conditions, such as sepsis, early post-surgical period, cardiovascular, cerebrovascular or pulmonary diseases, and even in critical settings. Evidence on this topic will be briefly discussed in this article.
Collapse
Affiliation(s)
- Marianna Martino
- Division of Endocrinology and Metabolic Diseases, Clinical and Molecular Sciences Department (DISCLIMO), Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria “Ospedali Riuniti Ancona”, Via Conca 71, 60126 Ancona, Italy
| | - Giorgio Arnaldi
- Division of Endocrinology and Metabolic Diseases, Clinical and Molecular Sciences Department (DISCLIMO), Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria “Ospedali Riuniti Ancona”, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|