1
|
Yacoub AM, Mahasneh AA, Yassin A, Almomani RF, Aqaileh S, Al-Mistarehi AH. Whole exome sequencing revealed ultra-rare genetic variations in juvenile myoclonic epilepsy. Neurol Sci 2025; 46:899-910. [PMID: 39616287 DOI: 10.1007/s10072-024-07874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/04/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVES Juvenile Myoclonic Epilepsy (JME) is the most common adolescent and adult-onset genetic generalized epilepsy. In this study, we aimed to identify all rare variants present in exons and exon-intron junctions in patients who met the criteria of JME, determine potentially pathogenic variants, and find the assumed genotype/phenotype correlation between the identified variants and the JME clinical features. METHODS Whole Exome Sequencing (WES) was performed for ten JME patients from different families. Validation, co-segregation and mode of inheritance were determined using Sanger DNA sequencing. RESULTS Predictable damaging variants were found in six families with positive co-segregation. Eight variants in eight genes (SCN1B, KCNQ2, CACNA1I, GABRA3, BSN, RYR3, SEZ6, and RYR2) and one novel variant in (TNR) gene were found to be associated with JME. All these genes play key roles in the interactions between neurons, neurotransmitter release, and maintenance of the balance between neuronal excitation and inhibition. SIGNIFICANCE Since the identified genes are involved in the molecular mechanisms underlying seizures, such variants can potentially be epileptogenic. In conclusion, the identified variants that co-segregate with JME symptoms and likely contribute in creating the adequate genetic background for the JME phenotype.
Collapse
Affiliation(s)
- Ansam M Yacoub
- Department of Biotechnology and Genetic Engineering, Faculty of Arts and Science, Jordan University of Science and Technology, Irbid, Jordan
| | - Amjad A Mahasneh
- Department of Biotechnology and Genetic Engineering, Faculty of Arts and Science, Jordan University of Science and Technology, Irbid, Jordan.
- Department of Biology, Chemistry and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, UAE.
| | - Ahmed Yassin
- Department of Neurology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rowida F Almomani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Suha Aqaileh
- Department of Neurology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
2
|
Xing Y, Cui T, Sun F. A novel RyR2 mutation associated with co-morbid catecholaminergic polymorphic ventricular tachycardia (CPVT) and benign epilepsy with centrotemporal spikes (BECTS). J Electrocardiol 2024; 84:75-80. [PMID: 38574633 DOI: 10.1016/j.jelectrocard.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
In this case report, we describe a 14-year-old patient with a novel RyR2 gene mutation (c.6577G > T/p.Val2193Leu), identified through a comprehensive review of medical history, examination findings, and follow-up data. The pathogenic potential of this mutation, which results in the loss of some interatomic forces and compromises the closure of the RyR2 protein pore leading to calcium leakage, was analyzed using the I-TASSER Suite to predict the structural changes in the protein. This mutation manifested clinically as co-morbid catecholaminergic polymorphic ventricular tachycardia (CPVT) and benign epilepsy with centrotemporal spikes (BECTS), a combination not previously documented in the same patient. While seizures were successfully managed with levetiracetam, the patient's exercise-induced syncope episodes could not be controlled with metoprolol, highlighting the complexity and challenge in managing CPVT associated with this novel RyR2 variation.
Collapse
Affiliation(s)
- Yinxue Xing
- Department of Neurology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China.
| | - Tao Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China
| | - Fan Sun
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
3
|
Daich Varela M, Wong SW, Kiray G, Schlottmann PG, Arno G, Shams ANA, Mahroo OA, Webster AR, AlTalbishi A, Michaelides M. Detailed Clinical, Ophthalmic, and Genetic Characterization of ADGRV1-Associated Usher Syndrome. Am J Ophthalmol 2023; 256:186-195. [PMID: 37422204 PMCID: PMC11139646 DOI: 10.1016/j.ajo.2023.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of ADGRV1-Usher syndrome (USH). DESIGN Multicenter international retrospective cohort study. METHODS Clinical notes, hearing loss history, multimodal retinal imaging, and molecular diagnosis were reviewed. Thirty patients (28 families) with USH type 2 and disease-causing variants in ADGRV1 were identified. Visual function, retinal imaging, and genetics were evaluated and correlated, with retinal features also compared with those of the commonest cause of USH type 2, USH2A-USH. RESULTS The mean age at the first visit was 38.6 ± 12.0 years (range: 19-74 years), and the mean follow-up time was 9.0 ± 7.7 years. Hearing loss was reported in the first decade of life by all patients, 3 (10%) described progressive loss, and 93% had moderate-severe impairment. Visual symptom onset was at 17.0 ± 7.7 years of age (range: 6-32 years), with 13 patients noticing problems before the age of 16. At baseline, 90% of patients had no or mild visual impairment. The most frequent retinal features were a hyperautofluorescent ring at the posterior pole (70%), perimacular patches of decreased autofluorescence (59%), and mild-moderate peripheral bone-spicule-like deposits (63%). Twenty-six (53%) variants were previously unreported, 19 families (68%) had double-null genotypes, and 9 were not-double-null. Longitudinal analysis showed significant differences between baseline and follow-up central macular thickness (-1.25 µm/y), outer nuclear layer thickness (-1.19 µm/y), and ellipsoid zone width (-40.9 µm/y). The rate of visual acuity decline was 0.02 LogMAR (1 letter)/y, and the rate of constriction of the hyperautofluorescent ring was 0.23 mm2/y. CONCLUSIONS ADGRV1-USH is characterized by early-onset, usually non-progressive, mild-to-severe hearing loss and generally good central vision until late adulthood. Perimacular atrophic patches and relatively retained ellipsoid zone and central macular thickness in later adulthood are more often seen in ADGRV1-USH than in USH2A-USH.
Collapse
Affiliation(s)
- Malena Daich Varela
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Shiao Wei Wong
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Gulunay Kiray
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | | | - Gavin Arno
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Amjaad N Abu Shams
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Andrew R Webster
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Michel Michaelides
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK.
| |
Collapse
|
4
|
Halász P, Szũcs A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review. Front Neurol 2023; 14:1092244. [PMID: 37388546 PMCID: PMC10301767 DOI: 10.3389/fneur.2023.1092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
"Sleep plasticity is a double-edged sword: a powerful machinery of neural build-up, with a risk to epileptic derailment." We aimed to review the types of self-limited focal epilepsies..."i.e. keep as two separate paragraphs" We aimed to review the types of self-limited focal epilepsies: (1) self-limited focal childhood epilepsy with centrotemporal spikes, (2) atypical Rolandic epilepsy, and (3) electrical status epilepticus in sleep with mental consequences, including Landau-Kleffner-type acquired aphasia, showing their spectral relationship and discussing the debated topics. Our endeavor is to support the system epilepsy concept in this group of epilepsies, using them as models for epileptogenesis in general. The spectral continuity of the involved conditions is evidenced by several features: language impairment, the overarching presence of centrotemporal spikes and ripples (with changing electromorphology across the spectrum), the essential timely and spatial independence of interictal epileptic discharges from seizures, NREM sleep relatedness, and the existence of the intermediate-severity "atypical" forms. These epilepsies might be the consequences of a genetically determined transitory developmental failure, reflected by widespread neuropsychological symptoms originating from the perisylvian network that have distinct time and space relations from secondary epilepsy itself. The involved epilepsies carry the risk of progression to severe, potentially irreversible encephalopathic forms.
Collapse
Affiliation(s)
- Péter Halász
- Department of Neurology, University Medical School, Pécs, Hungary
| | - Anna Szũcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Simoes Braga Boisserand L, Bouchart J, Geraldo LH, Lee S, Sanganahalli BG, Parent M, Zhang S, Xue Y, Skarica M, Guegan J, Li M, Liu X, Poulet M, Askanase M, Osherov A, Spajer M, Kamouh MRE, Eichmann A, Alitalo K, Zhou J, Sestan N, Sansing LH, Benveniste H, Hyder F, Thomas JL. VEGF-C promotes brain-derived fluid drainage, confers neuroprotection, and improves stroke outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542708. [PMID: 37398128 PMCID: PMC10312491 DOI: 10.1101/2023.05.30.542708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.
Collapse
|
6
|
Leng X, Zhang T, Guan Y, Tang M. Genotype and phenotype analysis of epilepsy caused by ADGRV1 mutations in Chinese children. Seizure 2022; 103:108-114. [DOI: 10.1016/j.seizure.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
7
|
Zhou P, Meng H, Liang X, Lei X, Zhang J, Bian W, He N, Lin Z, Song X, Zhu W, Hu B, Li B, Yan L, Tang B, Su T, Liu H, Mao Y, Zhai Q, Yi Y. ADGRV1 Variants in Febrile Seizures/Epilepsy With Antecedent Febrile Seizures and Their Associations With Audio-Visual Abnormalities. Front Mol Neurosci 2022; 15:864074. [PMID: 35813073 PMCID: PMC9262510 DOI: 10.3389/fnmol.2022.864074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objective ADGRV1 gene encodes adhesion G protein-coupled receptor-V1 that is involved in synaptic function. ADGRV1 mutations are associated with audio-visual disorders. Although previous experimental studies suggested that ADGRV1 variants were associated with epilepsy, clinical evidence is limited and the phenotype spectrum is to be defined. Methods Trio-based targeting sequencing was performed in a cohort of 101 cases with febrile seizure (FS) and epilepsy with antecedent FS. Protein modeling was used to assess the damaging effects of variants. The genotype-phenotype correlations of the ADGRV1 variants in epilepsy and audio-visual disorders were analyzed. Results ADGRV1 variants were identified in nine unrelated cases (8.91%), including two heterozygous frameshift variants, six heterozygous missense variants, and a pair of compound heterozygous variants. These variants presented a statistically higher frequency in this cohort than that in control populations. Most missense variants were located at CalX-β motifs and changed the hydrogen bonds. These variants were inherited from the asymptomatic parents, indicating an incomplete penetrance. We also identified SCN1A variants in 25 unrelated cases (24.75%) and SCN9A variants in 3 unrelated cases (2.97%) in this cohort. Contrary to SCN1A variant-associated epilepsy that revealed seizure was aggravated by sodium channel blockers, ADGRV1 variants were associated with mild epilepsy with favorable responses to antiepileptic drugs. The patients denied problems with audio-visual-vestibular abilities in daily life. However, audio-visual tests revealed auditory and visual impairment in the patient with compound heterozygous variants, auditory or vestibular impairment in the patients with heterozygous frameshift, or hydrogen-bond changed missense variants but no abnormalities in the patients with missense variants without hydrogen-bond changes. Previously reported ADGRV1 variants that were associated with audio-visual disorders were mostly biallelic/destructive variants, which were significantly more frequent in the severe phenotype of audio-visual disorders (Usher syndrome 2) than in other mild phenotypes. In contrast, the variants identified in epilepsy were monoallelic, missense mainly located at CalX-β, or affected isoforms VLGR1b/1c. Significance ADGRV1 is potentially associated with FS-related epilepsy as a susceptibility gene. The genotype, submolecular implication, isoforms, and damaging severity of the variants explained the phenotypical variations. ADGRV1 variant-associated FS/epilepsy presented favorable responses to antiepileptic drugs, implying a clinical significance.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Xiaoyu Liang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Lei
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jingwen Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjun Bian
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhijian Lin
- Department of Neurology, Affiliated Hospital of Putian University, Putian, China
| | - Xingwang Song
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Hu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingmei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bin Tang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | | | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiongxiang Zhai
| | - Yonghong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Yonghong Yi
| |
Collapse
|