1
|
Tseng SC, Dunnivan-Mitchell S, Cherry D, Chang SH. Transcranial Direct Current Stimulation for Improving Balance in Healthy Older Adults and Older Adults with Stroke: A Scoping Review. Brain Sci 2024; 14:1021. [PMID: 39452033 PMCID: PMC11506220 DOI: 10.3390/brainsci14101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Age-related decline in balance and postural control is common in healthy elders and is escalated in aging adults with stroke. Transcranial direct current stimulation (tDCS) has emerged as one of the promising brain stimulations adjoining therapeutic exercise to enhance the recovery of balance and motor functions in persons with and without neurological disorders. This review aims to summarize and compare the available evidence of the tDCS on improving balance in the older adults without neurological disorders and the older adults with stroke. Methods: The Ovid (Medline) database was searched from its inception through to 06/15/2024 for randomized controlled trials investigating tDCS for improving balance in older adults with and without stroke. Results: Overall, 20 appropriate studies (including 271 stroke subjects and 259 healthy older adults) were found. The data indicate mixed results of tDCS for improving balance in older adults with and without stroke. Conclusions: Based on current research evidence, we have not found a specific tDCS protocol that is more effective than other tDCS protocols for improving balance and postural control in healthy older adults and older adults with stroke. Further research should explore the ideal tDCS approach, possibly in conjunction with standard interventions, to optimize postural control and balance in healthy older adults and older adults with stroke.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Department of Physical Therapy and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555-5302, USA; (S.D.-M.); (D.C.)
| | - Sharon Dunnivan-Mitchell
- Department of Physical Therapy and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555-5302, USA; (S.D.-M.); (D.C.)
| | - Dana Cherry
- Department of Physical Therapy and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555-5302, USA; (S.D.-M.); (D.C.)
| | - Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030-3870, USA;
| |
Collapse
|
2
|
Bernal-Jiménez JJ, Dileone M, Mordillo-Mateos L, Martín-Conty JL, Durantez-Fernández C, Viñuela A, Martín-Rodríguez F, Lerin-Calvo A, Alcántara-Porcuna V, Polonio-López B. Combining Transcranial Direct Current Stimulation With Hand Robotic Rehabilitation in Chronic Stroke Patients: A Double-Blind Randomized Clinical Trial. Am J Phys Med Rehabil 2024; 103:875-882. [PMID: 38363693 DOI: 10.1097/phm.0000000000002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study aimed to assess the impact of combining transcranial direct current stimulation with end-effector robot-assisted treatment on upper limb function, spasticity, and hand dexterity in chronic stroke patients. DESIGN This was a prospective, double-blind randomized trial with 20 equally allocated stroke patients. The experimental group received dual transcranial direct current stimulation (anode over affected M1, cathode over contralateral M1) alongside robot-assisted treatment, while the control group received sham transcranial direct current stimulation with the same electrode placement + robot-assisted treatment. Each patient underwent 20 combined transcranial direct current stimulation and robot-assisted treatment sessions. The primary outcome measure was the Fugl-Meyer Upper Limb motor score, with secondary outcomes including AMADEO kinematic measures, Action Research Arm Test, and Functional Independence Measure. Assessments were conducted at baseline, after rehabilitation, and 3 mos later. RESULTS Combining bilateral transcranial direct current stimulation with robot-assisted treatment did not yield additional improvements in Fugl-Meyer Upper Limb motor score, Functional Independence Measure, or Action Research Arm Test scores among stroke patients. However, the real transcranial direct current stimulation group showed enhanced finger flexion in the affected hand based on AMADEO kinematic measures. CONCLUSIONS The addition of transcranial direct current stimulation to robot-assisted treatment did not result in significant overall functional improvements in chronic stroke patients. However, a benefit was observed in finger flexion of the affected hand.
Collapse
Affiliation(s)
- Juan J Bernal-Jiménez
- From the Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Technological Innovation Applied to Health Research Group (ITAS), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Neurology Department, Hospital Nuestra Señora del Prado, SESCAM Servicio de Salud de Castilla-La Mancha, Talavera de la Reina, Spain (DM); Department of Nursing, Faculty of Nursing, University of Valladolid, Valladolid, Spain (CD-F); Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain (FM-R); Prehospital Early Warning Scoring-System Investigation Group, Valladolid, Spain (FM-R); Advanced Life Support, Emergency Medical Services (SACYL), Valladolid, Spain (FM-R); Neuron Neurobotic, Madrid, Spain (AL-C); and Department of Physiotherapy, Faculty of Health Sciences, University La Salle, Madrid, Spain (AL-C)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mehraban Jahromi M, Vlček P, Grünerová Lippertová M. Stretching exercises in managing spasticity: effectiveness, risks, and adjunct therapies. Eur J Transl Myol 2024; 34:12455. [PMID: 38872376 PMCID: PMC11264228 DOI: 10.4081/ejtm.2024.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
Spasticity is a component of upper motor neuron disorders and can be seen in neurological conditions like stroke and multiple sclerosis. Although the incidence rate of spasticity is unknown, it can put pressure on the health condition of those with spasticity, and there is no absolute effective way to control it. In the past, stretching exercises were an accessible tool for physical therapists to manage and control spasticity, but opinions on the optimal dose, aftereffects, and mechanism of effects were controversial. Therefore, this article tries to provide an overview of the effectiveness and risks of stretching exercises. Furthermore, there are several adjunct therapies, such as brain stimulation and botulinum injection, that can increase the effectiveness of a simple stretch by increasing cortical excitability and reducing muscle tone and their role is evaluated in this regard. The results of this study propose that several prospective and case studies have demonstrated the benefits of stretching to control spasticity, but it seems that other methods such as casting can be more effective than a simple stretch. Therefore, it is better to use stretching in combination with other therapeutic regimes to increase its effectivity of it.
Collapse
Affiliation(s)
| | - Přemysl Vlček
- Third Faculty of Medicine, Charles University, Prague; National Institute of Mental Health, Klecany.
| | - Marcela Grünerová Lippertová
- Third Faculty of Medicine, Charles University, Prague; Department of Rehabilitation Medicine, FNKV University Hospital in Prague, Prague.
| |
Collapse
|
4
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
5
|
Rodríguez-Huguet M, Ayala-Martínez C, Vinolo-Gil MJ, Góngora-Rodríguez P, Martín-Valero R, Góngora-Rodríguez J. Transcranial direct current stimulation in physical therapy treatment for adults after stroke: A systematic review. NeuroRehabilitation 2024; 54:171-183. [PMID: 38143386 DOI: 10.3233/nre-230213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Stroke is a clinical syndrome that can cause neurological disorders due to a reduction or interruption in the blood flow at the brain level. Transcranial direct current stimulation (TDCS) is a non-invasive electrotherapy technique with the ability to modulate the function of nervous tissue. OBJECTIVE The aim of this review is to analyze the effects derived from the application of the TDCS for post-stroke patients on functionality and mobility. METHODS The data search was conducted in PubMed, PEDro, Cochrane Library, Web of Science and Scopus between July and August 2023. The search focused on randomized clinical trials conducted in the period of 2019-2023, and according to the selection criteria, seven studies were obtained. RESULTS The results found are mainly focused on the analysis of the scales Fugl-Meyer Assessment for Upper Extremity and Wolf Motor Function Test. CONCLUSION The application of TDCS presents benefits in post-stroke individuals on functionality, mobility and other secondary studied variables.
Collapse
Affiliation(s)
| | | | - Maria Jesus Vinolo-Gil
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- Rehabilitation Clinical Management Unit, Interlevels-Intercenters Hospital Puerta del Mar, Hospital Puerto Real, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | | | - Rocío Martín-Valero
- Department of Physiotherapy, Faculty of Health Science, CTS-1071 Research Group, University of Málaga, Málaga, Spain
| | | |
Collapse
|
6
|
Duan Q, Liu W, Yang J, Huang B, Shen J. Effect of Cathodal Transcranial Direct Current Stimulation for Lower Limb Subacute Stroke Rehabilitation. Neural Plast 2023; 2023:1863686. [PMID: 37274448 PMCID: PMC10239296 DOI: 10.1155/2023/1863686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Methods A pilot double-blind and randomized clinical trial. Ninety-one subjects with subacute stroke were treated with cathodal/sham stimulation tDCS based on CGR (physiotherapy 40 min/d and occupational therapy 20 min/d) once daily for 20 consecutive working days. Computer-based stratified randomization (1 : 1) was employed by considering age and sex, with concealed assignments in opaque envelopes to ensure no allocation errors after disclosure at the study's end. Patients were evaluated at T0 before treatment, T1 immediately after the posttreatment assessment, and T2 assessment one month after the end of the treatment. The primary outcome index was assessed: lower limb Fugl-Meyer motor score (FMA-LE); secondary endpoints were other gait assessment and relevant stroke scale assessment. Results Patients in the trial group performed significantly better than the control group in all primary outcome indicators assessed posttreatment T1 and at follow-up T2: FMA-LE outcome indicators between the two groups in T1 (P = 0.032; effect size 1.00, 95% CI: 0.00 to 2.00) and FMA-LE outcome indicators between the two groups in T2 (P = 0.010; effect size 2.00, 95% CI: 1.00 to 3.00). Conclusion In the current pilot study, ctDCS plus CGR was an effective treatment modality to improve lower limb motor function with subacute stroke. The effectiveness of cathodal tDCS in poststroke lower limb motor dysfunction is inconclusive. Therefore, a large randomized controlled trial is needed to verify its effectiveness.
Collapse
Affiliation(s)
- Qian Duan
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Wenying Liu
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jinhui Yang
- Department of Rehabilitation, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ben Huang
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jie Shen
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| |
Collapse
|
7
|
Aloi D, Jalali R, Calzolari S, Lafanechere M, Miall RC, Fernández-Espejo D. Multi-session tDCS paired with passive mobilisation of the thumb modulates thalamo-cortical coupling during command following in the healthy brain. Neuroimage 2023; 274:120145. [PMID: 37121374 DOI: 10.1016/j.neuroimage.2023.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes on effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session (paired with passive mobilisation of the thumb) decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Roya Jalali
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Sara Calzolari
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Melanie Lafanechere
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | | | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham.
| |
Collapse
|
8
|
Qurat-ul-ain, Ahmad Z, Ishtiaq S, Ilyas S, Shahid I, Tariq I, Malik AN, Liu T, Wang J. Short term effects of anodal cerebellar vs. anodal cerebral transcranial direct current stimulation in stroke patients, a randomized control trial. Front Neurosci 2022; 16:1035558. [PMID: 36507323 PMCID: PMC9730515 DOI: 10.3389/fnins.2022.1035558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Balance and gait impairments are major motor deficits in stroke patients that require intensive neuro-rehabilitation. Anodal transcranial direct current stimulation is a neuro-modulatory technique recently used in stroke patients for balance and gait improvement. Majority of studies focusing on tDCS have assessed its effects on cerebral motor cortex and more recently cerebellum as well but to our best knowledge the comparison of stimulating these two regions in stroke patients is not investigated so far. Objective The current study aimed to compare the effect of anodal transcranial direct current stimulation on cerebellar and cerebral motor cortex M1 in stroke patients. Materials and methods This double-blinded, parallel, randomized, sham controlled trial included 66 patients with a first-ever ischemic stroke were recruited into three groups; Cerebellar stimulation group (CbSG), M1 Stimulation Group (MSG), and Sham stimulation group (SSG). A total of three sessions of anodal transcranial direct current stimulation were given on consecutive days in addition to non-immersive virtual reality using Xbox 360 with kinect. Anodal tDCS with an intensity of 2 mA was applied for a duration of 20 min. Primary outcome measures berg balance scale (BBS), timed up and go test (TUG), BESTest Balance Evaluation-Systems Test (BESTest) and secondary outcomes measures montreal cognitive assessment (MoCA), mini mental state examination (MMSE), Johns Hopkins Fall Risk Assessment Tool (JHFRAT), twenty five feet walk test (25FWT), six minute walk test (6MWT), and tDCS Adverse Effects was assessed before initiation of treatment (T0) and at the end of third session of stimulation (T1). Results The results of between group's analysis using mean difference showed a significant difference with p-value <0.05 for balance (BBS, TUG, BESTest), walking ability (6MWT, 25FWT), risk of fall (JHFRAT). Cognitive function did not show any significant change among the groups for MoCA with p-value >0.05 but MMSE was improved having significant p-value (p = 0.013). However, 6MWT and 25FWT showed non-significant results for both between group and within group analysis. In pairwise comparison both the cerebellar and cerebral stimulation groups showed Significant difference with p-value <0.05 in comparison to sham stimulation; BBS (cerebellar vs. sham p ≤ 0.001, cerebral vs. sham p = 0.011), TUG (cerebellar vs. sham p = 0.001, cerebral vs. sham p = 0.041), Bestest (cerebellar vs. sham p = 0.007, cerebral vs. sham p = 0.003). Whereas for JHFRAT only cerebellar stimulation in comparison to sham and motor cortex stimulation showed significant improvements (cerebellar vs. M1 p = 0.037, cerebellar vs. sham p = 0.037). MMSE showed significant improvement in M1 stimulation (M1 vs. cerebellar p = 0.036, M1 vs. sham p = 0.011). Conclusion Findings of the study suggest anodal tDCS stimulation of the cerebellum and cerebral motor cortex both improves gait, balance and risk of fall in stroke patients. However, both stimulation sites do not induce any notable improvement in cognitive function. Effects of both stimulation sites have similar effects on mobility in stroke patients.
Collapse
Affiliation(s)
- Qurat-ul-ain
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China
| | - Zafran Ahmad
- School of Economics and Management, Yunnan University, Kunming, China
| | - Summaiya Ishtiaq
- Department of Rehabilitation Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saad Ilyas
- Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan
| | - Irum Shahid
- Institute of Physical Medical and Rehabilitation, Khyber Medical University, Peshawar, Pakistan
| | - Iqbal Tariq
- Faculty of Rehabilitation and Allied Health Sciences, Riphah College of Rehabilitation and Allied Health Sciences, Islamabad, Pakistan
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation and Allied Health Sciences, Riphah College of Rehabilitation and Allied Health Sciences, Islamabad, Pakistan
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China,*Correspondence: Jue Wang,
| |
Collapse
|
9
|
Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2022; 12:brainsci12070836. [PMID: 35884643 PMCID: PMC9312973 DOI: 10.3390/brainsci12070836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic effect of post-stroke spasticity has been explored. There are various NIBS methods depending on the stimulation modality, site and parameters. The purpose of this study is to evaluate the efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published before December 2021. Two independent researchers screened relevant articles and extracted data. This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]: −0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS) (MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further support the clinical application of NIBS in post-stroke spasticity.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| |
Collapse
|
10
|
Letter regarding the article “The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: a randomized, double-blinded sham-controlled trial study”. Neurol Sci 2022; 43:2865-2866. [DOI: 10.1007/s10072-021-05848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|