Li L, Sheng WW, Song LJ, Cheng S, Cui EG, Zhang YB, Yu XZ, Liu YL. Developing a nomogram for postoperative delirium in elderly patients with hip fractures.
World J Psychiatry 2025;
15:102117. [PMID:
40110020 PMCID:
PMC11886321 DOI:
10.5498/wjp.v15.i3.102117]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND
Postoperative delirium (POD) is a prevalent complication, particularly in elderly patients with hip fractures (HFs). It significantly affects recovery, length of hospital stay, healthcare costs, and long-term outcomes. Existing studies have investigated risk factors for POD, but most are limited by single-factor analyses or small sample sizes. This study systematically determines independent risk factors using large-scale data and machine learning techniques and develops a validated nomogram model to support early prediction and management of POD.
AIM
To investigate POD incidence in elderly patients with HF and the independent risk factors, according to which a nomogram prediction model was developed and validated.
METHODS
This retrospective study included elderly patients with HF who were surgically treated in Dongying People's Hospital from April 2018 to April 2022. The endpoint event includes POD. They were categorized into the modeling and validation cohorts in a 7:3 ratio by randomization. Both cohorts were further classified into the delirium and normal (non-delirium) groups according to the presence or absence of the endpoint event. The incidence of POD was calculated, and logistic multivariate analysis was conducted to determine the independent risk factors. The calibration curve and the Hosmer-Lemeshow test as well as the net benefit threshold probability interval by the decision curve were utilized to statistically validate the accuracy of the nomogram prediction model, developed according to each factor's influence intensity.
RESULTS
This study included 532 elderly patients with HF, with an overall POD incidence of 14.85%. The comparison of baseline data with perioperative indicators revealed statistical differences in age (P < 0.001), number of comorbidities (P = 0.042), American Society of Anesthesiologists grading (P = 0.004), preoperative red blood cell (RBC) count (P < 0.001), preoperative albumin (P < 0.001), preoperative hemoglobin (P < 0.001), preoperative platelet count (P < 0.001), intraoperative blood loss (P < 0.001), RBC transfusion of ≥ 2 units (P = 0.001), and postoperative intensive care unit care (P < 0.001) between the delirium and non-delirium groups. The participants were randomized to a training group (n = 372) and a validation group (n = 160). A score-risk nomogram prediction model was developed after screening key POD features using Lasso regression, support vector machine, and the random forest method. The nomogram showed excellent discriminatory capacity with area under the curve of 0.833 [95% confidence interval (CI) interval: 0.774-0.888] in the training group and 0.850 (95%CI: 0.718-0.982) in the validation group. Calibration curves demonstrated good agreement between predicted and actual probabilities, and decision curve analysis confirmed clinical net benefits within risk thresholds of 0%-30% and 0%-36%, respectively. The model has strong accuracy and clinical utility for predicting the risk of POD.
CONCLUSION
This study reveals cognitive impairment history, American Society of Anesthesiologists grade of > 2, RBC transfusion of ≥ 2 units, postoperative intensive care unit care, and preoperative hemoglobin level as independent risk factors for POD in elderly patients with HF. The developed nomogram model demonstrates excellent accuracy and stability in predicting the risk of POD, which is recommended to be applied in clinical practice to optimize postoperative management and reduce delirium incidence.
Collapse