1
|
Activity of Aerosolized Levofloxacin against Burkholderia cepacia in a Mouse Model of Chronic Lung Infection. Antimicrob Agents Chemother 2020; 64:AAC.01988-19. [PMID: 31712215 DOI: 10.1128/aac.01988-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex is an opportunistic pathogen capable of causing chronic pulmonary infections. These studies were conducted to demonstrate the activity of aerosolized levofloxacin in a chronic mouse lung infection model caused by B. cepacia isolates from patients with cystic fibrosis. Treatment with aerosolized levofloxacin for 4 days produced at least 1 log CFU of bacterial killing against all strains tested, suggesting possible utility in the treatment of lung infections caused by B. cepacia isolates.
Collapse
|
2
|
Burkholderia cepacia complex in cystic fibrosis in a Brazilian reference center. Med Microbiol Immunol 2017; 206:447-461. [DOI: 10.1007/s00430-017-0521-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
3
|
Gautam V, Shafiq N, Singh M, Ray P, Singhal L, Jaiswal NP, Prasad A, Singh S, Agarwal A. Clinical and in vitro evidence for the antimicrobial therapy in Burkholderia cepacia complex infections. Expert Rev Anti Infect Ther 2015; 13:629-63. [PMID: 25772031 DOI: 10.1586/14787210.2015.1025056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of infections caused by Burkholderia cepacia complex (Bcc) in cystic fibrosis (CF) patients poses a complex problem. Bcc is multidrug-resistant due to innate and acquired mechanisms of resistance. As CF patients receive multiple courses of antibiotics, susceptibility patterns of strains from CF patients may differ from those noted in strains from non-CF patients. Thus, there was a need for assessing in vitro and clinical data to guide antimicrobial therapy in these patients. A systematic search of literature, followed by extraction and analysis of available information from human and in vitro studies was done. The results of the analysis are used to address various aspects like use of antimicrobials for pulmonary and non-pulmonary infections, use of combination versus monotherapy, early eradication, duration of therapy, route of administration, management of biofilms, development of resistance during therapy, pharmacokinetics-pharmacodynamics correlations, therapy in post-transplant patients and newer drugs in Bcc-infected CF patients.
Collapse
Affiliation(s)
- Vikas Gautam
- Deparatment of Medical Microbiology, PGIMER, Chandigarh 160022, India
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 2013; 8:e67629. [PMID: 23799151 PMCID: PMC3682984 DOI: 10.1371/journal.pone.0067629] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF) resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.
Collapse
Affiliation(s)
- Laura A. Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology and the Department of Internal Medicine, College of Medicine, and the Ohio State University, Columbus, Ohio, United States of America
| | - M. Elizabeth Brockson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
5
|
Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain. Eur J Clin Microbiol Infect Dis 2012; 31:3385-96. [DOI: 10.1007/s10096-012-1707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 12/01/2022]
|
6
|
Papaleo MC, Fondi M, Maida I, Perrin E, Lo Giudice A, Michaud L, Mangano S, Bartolucci G, Romoli R, Fani R. Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 2012; 30:272-93. [DOI: 10.1016/j.biotechadv.2011.06.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/27/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
|
7
|
Morgan RE, Batot GO, Dement JM, Rao VA, Eadsforth TC, Hunter WN. Crystal structures of Burkholderia cenocepacia dihydropteroate synthase in the apo-form and complexed with the product 7,8-dihydropteroate. BMC STRUCTURAL BIOLOGY 2011; 11:21. [PMID: 21554707 PMCID: PMC3098144 DOI: 10.1186/1472-6807-11-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
Abstract
Background The enzyme dihydropteroate synthase (DHPS) participates in the de novo synthesis of folate cofactors by catalyzing the formation of 7,8-dihydropteroate from condensation of p-aminobenzoic acid with 6-hydroxymethyl-7,8-dihydropteroate pyrophosphate. DHPS is absent from humans, who acquire folates from diet, and has been validated as an antimicrobial therapeutic target by chemical and genetic means. The bacterium Burkholderia cenocepacia is an opportunistic pathogen and an infective agent of cystic fibrosis patients. The organism is highly resistant to antibiotics and there is a recognized need for the identification of new drugs against Burkholderia and related Gram-negative pathogens. Our characterization of the DHPS active site and interactions with the enzyme product are designed to underpin early stage drug discovery. Results An efficient recombinant protein expression system for DHPS from B. cenocepacia (BcDHPS) was prepared, the dimeric enzyme purified in high yield and crystallized. The structure of the apo-enzyme and the complex with the product 7,8-dihydropteroate have been determined to 2.35 Å and 1.95 Å resolution respectively in distinct orthorhombic crystal forms. The latter represents the first crystal structure of the DHPS-pterin product complex, reveals key interactions involved in ligand binding, and reinforces data generated by other structural studies. Comparisons with orthologues identify plasticity near the substrate-binding pocket and in particular a range of loop conformations that contribute to the architecture of the DHPS active site. These structural data provide a foundation for hit discovery. An intriguing observation, an artifact of the analysis, that of a potential sulfenamide bond within the ligand complex structure is mentioned. Conclusion Structural similarities between BcDHPS and orthologues from other Gram-negative species are evident as expected on the basis of a high level of sequence identity. The presence of 7,8-dihydropteroate in the binding site provides details about ligand recognition by the enzyme and the different states of the enzyme allow us to visualize distinct conformational states of loops adjacent to the active site. Improved drugs to combat infections by Burkholderia sp. and related Gram-negative bacteria are sought and our study now provides templates to assist that process and allow us to discuss new ways of inhibiting DHPS.
Collapse
Affiliation(s)
- Rachel E Morgan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
8
|
Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2011; 16:821-30. [PMID: 20880411 DOI: 10.1111/j.1469-0691.2010.03237.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia cepacia complex (Bcc) bacteria have gained notoriety as pathogens in cystic fibrosis (CF) because they are difficult to identify and treat, and also have the ability to spread between CF individuals. Of the 17 formally named species within the complex, Burkholderia multivorans and Burkholderia cenocepacia dominate in CF. Multilocus sequence typing has proven to be a very useful tool for tracing the global epidemiology of Bcc bacteria and has shown that B. cenocepacia strains with high transmissibility, such as the ET-12 strain (ST-28) and the Czech strain (ST-32), have spread epidemically within CF populations in Canada and Europe. The majority of research on the molecular pathogenesis of Bcc bacteria has focused on the B. cenocepacia ET-12 epidemic lineage, with gene mutation, genome sequence analysis and, most recently, global gene expression studies shedding considerable light on the virulence and antimicrobial resistance of this pathogen. These studies demonstrate that the ability of B. cenocepacia to acquire foreign DNA (genomic islands, insertion sequences and other mobile elements), regulate gene expression via quorum sensing, compete for iron during infection, and mediate antimicrobial resistance and inflammation via its membrane and surface polysaccharides are key features that underpin the virulence of different strains. With the wealth of molecular knowledge acquired in the last decade on B. cenocepacia strains, we are now in a much better position to develop strategies for the treatment of pathogenic colonization with Bcc and to answer key questions on pathogenesis concerning, for example, the factors that trigger the rapid clinical decline in CF patients.
Collapse
Affiliation(s)
- P Drevinek
- Paediatric Department, 2nd Medical School, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
9
|
Golshahi L, Lynch KH, Dennis JJ, Finlay WH. In vitro lung delivery of bacteriophages KS4-M and ΦKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J Appl Microbiol 2010; 110:106-17. [PMID: 20875034 DOI: 10.1111/j.1365-2672.2010.04863.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AIMS To determine the feasibility of formulating and aerosolizing powders containing bacteriophages KS4-M and ΦKZ for lung delivery and treatment of pulmonary Burkholderia cepacia complex and Pseudomonas aeruginosa infections. METHODS AND RESULTS Endotoxin-removed bacteriophages KS4-M and ΦKZ were lyophilized in lactose/lactoferrin 60 : 40 w/w matrix and deagglomerated in a mixer mill (without beads) to formulate respirable powders. The powders were then aerosolized using an Aerolizer(®) capsule inhaler. Mass median aerodynamic diameter (MMAD) of this inhalable aerosol was determined using Andersen cascade impactor at 60 l min(-1). Measured MMAD for both types of powders was 3·4 μm, and geometric standard deviation was 1·9-2·0. Viability of bacteriophages delivered distal to an idealized mouth-throat replica was determined from bioassays of samples collected on filters placed after the idealized replica. As a percentage of inhaler load, amount of powder delivered distal to the mouth-throat replica, which is a measure of lung delivery, was 33·7 ± 0·3% for KS4-M and 32·7 ± 0·9% for ΦKZ. Titres collected downstream of the mouth throat were (3·4 ± 2·5) × 10(6) PFU for KS4-M with an Aerolizer capsule load of (9·8 ± 4·8) × 10(6) and (1·9 ± 0·6) × 10(7) for ΦKZ with an Aerolizer capsule load of (6·5 ± 1·9) × 10(7). CONCLUSIONS Bacteriophages KS4-M and ΦKZ can be lyophilized without significant loss of viability in a lactose/lactoferrin 60 : 40 w/w matrix. The resulting powders can be aerosolized to deliver viable bacteriophages to the lungs. SIGNIFICANCE AND IMPACT OF THE STUDY Development of lactoferrin-based bacteriophage aerosol powders solidifies the ground for future research on developing novel formulations as an alternative to inhaled antibiotic therapy in patients with cystic fibrosis.
Collapse
Affiliation(s)
- L Golshahi
- University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
10
|
Schwan WR, Dunek C, Gebhardt M, Engelbrecht K, Klett T, Monte A, Toce J, Rott M, Volk TJ, LiPuma JJ, Liu XT, McKelvey R. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity. Ann Clin Microbiol Antimicrob 2010; 9:4. [PMID: 20092635 PMCID: PMC2823644 DOI: 10.1186/1476-0711-9-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii and species within the Burkholderia cepacia complex (BCC) are significant opportunistic bacterial pathogens of humans. These species exhibit a high degree of antibiotic resistance, and some clinical isolates are resistant to all currently available antimicrobial drugs used for treatment. Thus, new drugs are needed to treat infections by these species. Mushrooms could be a potential source for new drugs to treat A. baumannii and BCC infections. METHODS The aim of this study was to screen a library of crude extracts from 330 wild mushrooms by disk diffusion assays for antibacterial activity against A. baumannii and Burkholderia cepacia in the hope of identifying a novel natural drug that could be used to treat infections caused by these species. Once positive hits were identified, the extracts were subjected to bioassay-guided separations to isolate and identify the active drug molecules. MICs were performed to gauge the in vitro activity of the purified compounds. RESULTS Only three crude extracts (0.9%) had activity against A. baumannii and B. cepacia. Compounds from two of these extracts had MICs greater than 128 microg/ml, and further analyses were not performed. From the third extract, prepared from Leucopaxillus albissimus, 2-aminoquinoline (2-AQ) was isolated. This compound exhibited a modest MIC in vitro against strains from nine different BCC species, including multi-drug resistant clinical isolates (MIC = 8-64 microg/ml), and a weak MIC (128 microg/ml) against A baumannii. The IC50 against a murine monocyte line was 1.5 mg/ml. CONCLUSION The small number of positive hits in this study suggests that finding a new drug from mushrooms to treat Gram-negative bacterial infections may be difficult. Although 2-AQ was identified in one mushroom, and it was shown to inhibit the growth of multi-drug resistant BCC isolates, the relatively high MICs (8-128 microg/ml) for both A. baumannii and BCC strains suggests that 2-AQ is not suitable for further drug development in its current form.
Collapse
Affiliation(s)
- William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. Eur J Clin Microbiol Infect Dis 2008; 27:1101-11. [PMID: 18600352 DOI: 10.1007/s10096-008-0552-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 10/30/2007] [Indexed: 10/21/2022]
Abstract
The treatment of cystic fibrosis (CF) patients chronically infected with Burkholderia cepacia complex (Bcc) bacteria requires extensive and aggressive antibiotics therapy, exposing these bacteria to prolonged antibiotics-selective pressure. In the present study, we have compared the susceptibility patterns to 13 antimicrobials of 94 Bcc isolates obtained from 15 Portuguese CF patients in the course of chronic infection during a five-year survey. These isolates were previously genotyped and represent 11 different strains of the species B. cenocepacia (subgroups A and B), B. cepacia, B. multivorans, and B. stabilis. The results are consistent with the notion that CF Bcc isolates are resistant to the most clinically relevant antimicrobials and suggest an uneven distribution of resistance rates among the different species, with B. cenocepacia subgroup A isolates being the most resistant. Phenotypic variants exhibiting differences in the antimicrobial susceptibility patterns were obtained from the sputum samples of clinically deteriorated CF patients during chronic lung infection. The isolation of resistant variants coincided with periods of pulmonary exacerbation and antibiotics therapy.
Collapse
|
12
|
Silipo A, Molinaro A, Ieranò T, De Soyza A, Sturiale L, Garozzo D, Aldridge C, Corris PA, Khan CMA, Lanzetta R, Parrilli M. The complete structure and pro-inflammatory activity of the lipooligosaccharide of the highly epidemic and virulent gram-negative bacterium Burkholderia cenocepacia ET-12 (strain J2315). Chemistry 2007; 13:3501-11. [PMID: 17219455 DOI: 10.1002/chem.200601406] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of genus Burkholderia include opportunistic Gram-negative bacteria that are responsible for serious infections in immunocompromised and cystic fibrosis (CF) patients. The Burkholderia cepacia complex is a group of microorganisms composed of at least nine closely related genomovars. Among these, B. cenocepacia is widely recognized to cause epidemics associated with excessive mortality. Species that belong to this strain are problematic CF pathogens because of their high resistance to antibiotics, which makes respiratory infections difficult to treat and impossible to eradicate. Infection by these bacteria is associated with higher mortality in CF and poor outcomes following lung transplantation. One virulence factor contributing to this is the pro-inflammatory lipopolysaccharide (LPS) molecules. Thus, the knowledge of the lipopolysaccharide structure is an essential prerequisite to the understanding of the molecular mechanisms involved in the inflammatory process. Such data are instrumental in aiding the design of antimicrobial compounds and for developing therapeutic strategies against the inflammatory cascade. In particular, defining the structure of the LPS from B. cenocepacia ET-12 clone LMG 16656 (also known as J2315) is extremely important given the recent completion of the sequencing project at the Sanger Centre using this specific strain. In this paper we address this issue by defining the pro-inflammatory activity of the pure lipopolysaccharide, and by describing its full primary structure. The activity of the lipopolysaccharide was tested as a stimulant in human myelomonocytic U937 cells. The structural analysis was carried out by compositional analysis, mass spectrometry and 2D NMR spectroscopy on the intact lipooligosacchride (LOS) and its fragments, which were obtained by selective chemical degradations.
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli, Complesso Universitario Monte Sant'angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Park KH, Lipuma JJ, Lubman DM. Comparative proteomic analysis of B. cenocepacia using two-dimensional liquid separations coupled with mass spectrometry. Anal Chim Acta 2007; 592:91-100. [PMID: 17499075 DOI: 10.1016/j.aca.2007.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Burkholderia cenocepacia is an important respiratory pathogen in persons with cystic fibrosis. We compared the proteomes of clinical and environmental isolates of B. cenocepacia by using a 2D liquid separation method coupled with mass spectrometry. Proteome maps of four B. cenocepacia isolates were generated. In the first dimension, 5 mg of protein from each isolate was fractionated by chromatofocusing (CF) in the range of pH 4.0-7.0. In the second dimension, each CF fraction was separated by NPS-RP-HPLC. Results of the 2D liquid separation were visualized as 2D UV maps, which allowed direct comparison of proteomes with high resolution and reproducibility. From the proteomic comparison of the four isolates, 38 of 96 differentially abundant proteins were identified by peptide mass fingerprinting and MS/MS sequence analysis using a partially annotated B. cenocepacia protein database. Many of the identified proteins in the clinical isolates are involved in gene translation and bacterial virulence such as transmissibility, resistance, and quorum sensing.
Collapse
Affiliation(s)
- Kyu H Park
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To examine recent publications on lung transplantation for cystic fibrosis for changes in surgical techniques, selection criteria of patients, and impact on quality of life. RECENT FINDINGS Recent evidence focuses on cystic fibrosis patient subsets enabling better decisions about listing for lung transplantation as a therapeutic option. There is information about Burkholderia cepacia infection, ventilator dependence, young age, and arthropathy. In the US, the United Network for Organ Sharing has addressed perceived inequities in organ distribution by allocating organs by illness severity rather than time on the waiting list. A Lung Allocation Score ranks severity for patients 12 years of age and older for transplantation based on variables including lung function, oxygen and ventilatory needs, diabetes, weight and physical performance. Some recently studied important variables that influence survival in cystic fibrosis and after lung transplantation, including airway infections, pancreatic exocrine function and acute exacerbations, are not included in the Lung Allocation Score. Few publications have examined quality of life after transplantation, and a definitive work has yet to appear. SUMMARY New information has refined decision-making about lung transplantation for patients with cystic fibrosis. We examine recent findings and make recommendations for patients, families and medical providers.
Collapse
Affiliation(s)
- Theodore G Liou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|