1
|
Morse ZJ, Horwitz MS. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Front Immunol 2021; 12:751337. [PMID: 34721424 PMCID: PMC8554326 DOI: 10.3389/fimmu.2021.751337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to genetic predisposition, environmental determinants contribute to a complex etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the gut as an important site for immune modulation that can directly impact development of autoreactive cell populations against pancreatic self-antigens. Significant efforts have been made to unravel how changes in the microbiome function as a contributor to autoimmune responses and can serve as a biomarker for diabetes development. Large-scale longitudinal studies reveal that common environmental exposures precede diabetes pathology. Virus infections, particularly those associated with the gut, have been prominently identified as risk factors for T1D development. Evidence suggests recent-onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading up to development of diabetes. The start of these dysbiotic events coincide with detection of virus infections. Thus viral infection may be a contributing driver for microbiome dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately, understanding the cross-talk between viral infection, the microbiome, and the immune system is key for the development of preventative measures against T1D.
Collapse
Affiliation(s)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
3
|
Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res 2017; 119:219-226. [PMID: 28188825 DOI: 10.1016/j.phrs.2017.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The gut microbiota interact with innate immune cells and play an important role in shaping the immune system. Many factors may influence the composition of the microbiota such as mode of birth, diet, infections and medication including antibiotics. In diseases with a multifactorial etiology, like type 1 diabetes, manipulation and alterations of the microbiota in animal models have been shown to influence the incidence and onset of disease. The microbiota are an important part of the internal environment and understanding how these bacteria interact with the innate immune cells to generate immune tolerance may open up opportunities for development of new therapeutic strategies. In this review, we discuss recent findings in relation to the microbiota, particularly in the context of type 1 diabetes.
Collapse
|
4
|
Dutta S, Ganesh M, Ray P, Narang A. Intestinal colonization among very low birth weight infants in first week of life. Indian Pediatr 2015; 51:807-9. [PMID: 25362012 DOI: 10.1007/s13312-014-0507-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study intestinal colonization patterns in very low birth weight infants in the first week of life in a neonatal intensive care unit. METHODS Meconium/stool specimens were obtained on days 1, 3, 5 and 7 from 38 very low-birth-weight infants in a level III neonatal intensive care unit. RESULTS On day 1, 45% had sterile guts, and by day 3, all infants were colonized. E. coli, K. pneumoniae and Enterococcus fecalis were predominant organisms. Lactobacilli was found in one isolate and Bifidobacteria was not detected during the study period. There was an association between formula feeding and E. coli colonization. CONCLUSION Very low birth weight infants admitted in neonatal intensive care units have abnormal intestinal colonization patterns.
Collapse
Affiliation(s)
- Sourabh Dutta
- Departments of Pediatrics and *Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India. Correspondence to: Dr Sourabh Dutta, Additional Professor, Division of Neonatology, Department of Pediatrics, PGIMER, Chandigarh 160 012, India.
| | | | | | | |
Collapse
|
5
|
Panda S, El khader I, Casellas F, López Vivancos J, García Cors M, Santiago A, Cuenca S, Guarner F, Manichanh C. Short-term effect of antibiotics on human gut microbiota. PLoS One 2014; 9:e95476. [PMID: 24748167 PMCID: PMC3991704 DOI: 10.1371/journal.pone.0095476] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002). At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016). Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04). The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.
Collapse
Affiliation(s)
- Suchita Panda
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Ismail El khader
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Francesc Casellas
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Josefa López Vivancos
- Internal Medicine Department, Capio Hospital General de Catalunya, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat García Cors
- Internal Medicine Department, Capio Hospital General de Catalunya, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Santiago
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Silvia Cuenca
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Francisco Guarner
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Chaysavanh Manichanh
- Digestive System Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Strategies to minimize antibiotic resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4274-305. [PMID: 24036486 PMCID: PMC3799537 DOI: 10.3390/ijerph10094274] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.
Collapse
|
7
|
Marranzino G, Villena J, Salva S, Alvarez S. Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol Immunol 2013; 56:771-81. [PMID: 22846065 DOI: 10.1111/j.1348-0421.2012.00495.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus rhamnosus CRL1505 (Lr1505), L. rhamnosus CRL1506 (Lr1506) and L. casei CRL431 (Lc431) are able to stimulate intestinal immunity, but only Lr1505 and Lc431 are able to stimulate immunity in the respiratory tract. With the aim of advancing the understanding of the immunological mechanisms involved in stimulation of distant mucosal sites, this study evaluated the effects of orally administered probiotics on the functions of alveolar and peritoneal macrophages. Compared to a control group, these three lactobacilli were able to significantly increase phagocytic and microbicidal activities of peritoneal macrophages. After intraperitoneal challenge with pathogenic Candida albicans, mice treated with immunobiotics had significantly lower pathogen counts in infected organs. Moreover, lactobacilli-treated mice had a stronger immune response against C. albicans. On the other hand, only Lc1505 and Lc431 were able to improve activity of and cytokine production by alveolar macrophages. Only in these two groups was there better resistance to respiratory challenge with C. albicans, which correlated with improved respiratory immune response. The results of this study suggest that consumption of some probiotic strains could be useful for improving resistance to infections in sites distant from the gut by increasing the activity of macrophages at those sites.
Collapse
Affiliation(s)
- Gabriela Marranzino
- Laboratory of Clinical and Experimental Biochemistry, Reference Center for Lactobacilli, Tucuman, Argentina
| | | | | | | |
Collapse
|
8
|
Villena J, Chiba E, Tomosada Y, Salva S, Marranzino G, Kitazawa H, Alvarez S. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol 2012; 13:53. [PMID: 22989047 PMCID: PMC3460727 DOI: 10.1186/1471-2172-13-53] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022] Open
Abstract
Background Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses. Results In this work we demonstrated that orally administered Lactobacillus rhamnosus CRL1505 (Lr1505) was able to increase the levels of IFN-γ, IL-10 and IL-6 in the respiratory tract and the number of lung CD3+CD4+IFN-γ+ T cells. To mimic the pro-inflammatory and physiopathological consecuences of RNA viral infections in the lung, we used an experimental model of lung inflammation based on the administration of the artificial viral pathogen-associated molecular pattern poly(I:C). Nasal administration of poly(I:C) to mice induced a marked impairment of lung function that was accompanied by the production of pro-inflammatory mediators and inflammatory cell recruitment into the airways. The preventive administration of Lr1505 reduced lung injuries and the production of TNF-α, IL-6, IL-8 and MCP-1 in the respiratory tract after the challenge with poly(I:C). Moreover, Lr1505 induced a significant increase in lung and serum IL-10. We also observed that Lr1505 was able to increase respiratory IFN-γ levels and the number of lung CD3+CD4+IFN-γ+ T cells after poly(I:C) challenge. Moreover, higher numbers of both CD103+ and CD11bhigh dendritic cells and increased expression of MHC-II, IL-12 and IFN-γ in these cell populations were found in lungs of Lr1505-treated mice. Therefore, Lr1505 treatment would beneficially regulate the balance between pro-inflammatory mediators and IL-10, allowing an effective inflammatory response against infection and avoiding tissue damage. Conclusions Results showed that Lr1505 would induce a mobilization of cells from intestine and changes in cytokine profile that would be able to beneficially modulate the respiratory mucosal immunity. Although deeper studies are needed using challenges with respiratory viruses, the results in this study suggest that Lr1505, a potent inducer of antiviral cytokines, may be useful as a prophylactic agent to control respiratory virus infection.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Clinical and Experimental Biochemistry, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lujan DK, Stanziale JA, Mostafavi AZ, Sharma S, Troutman JM. Chemoenzymatic synthesis of an isoprenoid phosphate tool for the analysis of complex bacterial oligosaccharide biosynthesis. Carbohydr Res 2012; 359:44-53. [PMID: 22925763 DOI: 10.1016/j.carres.2012.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
Abstract
Undecaprenyl Pyrophosphate Synthase (UPPS) is a key enzyme that catalyzes the production of bactoprenols, which act as membrane anchors for the assembly of complex bacterial oligosaccharides. One of the major hurdles in understanding the assembly of oligosaccharide assembly is a lack of chemical tools to study this process, since bactoprenols and the resulting isoprenoid-linked oligosaccharides lack handles or chromophores for use in pathway analysis. Here we describe the isolation of a new UPPS from the symbiotic microorganism Bacteroides fragilis, a key species in the human microbiome. The protein was purified to homogeneity and utilized to accept a chromophore containing farnesyl diphosphate analogue as a substrate. The analogue was utilized by the enzyme and resulted in a bactoprenyl diphosphate product with an easy to monitor tag associated with it. Furthermore, the diphosphate is shown to be readily converted to monophosphate using a common molecular biology reagent. This monophosphate product allowed for the investigation of complex oligosaccharide biosynthesis, and was used to probe the activity of glycosyltransferases involved in the well characterized Campylobacter jejuni N-linked protein glycosylation. Novel reagents similar to this will provide key tools for the study of uncharacterized oligosaccharide assemblies, and open the possibility for the development of rapid screening methodology for these biosynthetic systems.
Collapse
Affiliation(s)
- Donovan K Lujan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | | | | | | | | |
Collapse
|
10
|
Abstract
Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern-recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections, including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential links between viruses, microbiota, and the host immune system. Furthermore, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease and speculate on the benefit for probiotic therapies against such diseases.
Collapse
Affiliation(s)
- Iris K Pang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
11
|
Abstract
Antibiotics have been used effectively as a means to treat bacterial infections in humans and animals for over half a century. However, through their use, lasting alterations are being made to a mutualistic relationship that has taken millennia to evolve: the relationship between the host and its microbiota. Host-microbiota interactions are dynamic; therefore, changes in the microbiota as a consequence of antibiotic treatment can result in the dysregulation of host immune homeostasis and an increased susceptibility to disease. A better understanding of both the changes in the microbiota as a result of antibiotic treatment and the consequential changes in host immune homeostasis is imperative, so that these effects can be mitigated.
Collapse
|
12
|
Buchholz BM, Billiar TR, Bauer AJ. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol 2010; 299:G531-8. [PMID: 20508155 PMCID: PMC2928536 DOI: 10.1152/ajpgi.00060.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TLR4 ligation by pathogen-associated molecular patterns, such as Gram-negative bacteria-derived LPS, triggers a nonhematopoietic cell-mediated ileus during early endotoxemia. Our objective was to investigate the quantitative contributions of the two downstream signaling pathways of TLR4, namely the adapter proteins myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF). Six hours after intraperitoneal injection of highly purified LPS (UP-LPS, 5 mg/kg), in vivo gastrointestinal transit and intestinal muscularis gene transcripts of inflammatory mediators chemokine (C-X-C motif) ligand 10, synonymous IP-10 (CXCL10), granulomonocyte colony stimulating factor (GM-CSF, synonymous CSF-2), IL-1beta, IL-6, IL-10, and inducible NO synthase (iNOS) were assessed in mice with transgenic loss-of-function for MyD88 or TRIF. LPS-induced MyD88 and TRIF mRNA upregulation was quantified within the intestinal muscularis of TLR4-competent and TLR4-mutant mice, and MyD88 mRNA levels were additionally measured in TLR4 bone marrow chimeras. MyD88 deficiency completely protected mice from early endotoxin-induced ileus, while TRIF deficiency partially ameliorated ileus severity. LPS induction of the primary downstream signaling element MyD88 was TLR4 dependent and was derived in equal amounts from both the hematopoietic and the nonhematopoietic cells. Conversely, no induction of TRIF mRNA was detectable. Significant gene induction of all inflammatory mediators was dependent on intracellular signal transduction by MyD88, while the TRIF MyD88-independent pathway predominantly regulated the molecular levels of CXCL10. In summary, MyD88 and TRIF are nonredundant signaling pathways in early endotoxin-induced rodent ileus, but MyD88 is the essential adaptor molecule for transduction of early TLR4-induced ileus and inflammatory signaling. The dependency of ileus on individual adaptor protein pathways is also reflected in the manifestation of specific molecular inflammatory events within the intestinal muscularis externa.
Collapse
Affiliation(s)
- Bettina M. Buchholz
- 1Department of Medicine/Gastroenterology, University of Pittsburgh, Pittsburgh, Pennsylvania; ,2Department of Surgery, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany; and
| | - Timothy R. Billiar
- 3Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony J. Bauer
- 1Department of Medicine/Gastroenterology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|