1
|
Chen J, Zheng F, Sun X, Gao H, Lin S, Zeng Y. The qualitative accuracy of clinical dermatophytes via matrix-assisted laser desorption ionization-time of flight mass spectrometry: a meta-analysis. Med Mycol 2021; 59:1174-1180. [PMID: 34415045 DOI: 10.1093/mmy/myab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dermatophytes are an important part of superficial fungal infections, and accurate diagnosis is paramount for successful treatment. Recently, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool to identify clinical pathogens; its advantages are cost-effectiveness, rapid detection, and high accuracy. However, as the accurate identification of clinical dermatophytes via MALDI-TOF MS has still not been fully evaluated, we performed a meta-analysis for systematic evaluation it. Fifteen eligible studies were involved and showed high accuracy with an identification ratio of 0.96 (95%CI = 0.92─1.01) and 0.91 (95%CI = 0.86─0.96) at the genus and species levels, respectively. The results showed higher accuracy ratio of Vitek MS (91%) than MALDI Biotyper (85%). Dermatophytes such as Trichophyton interdigitale (0.99, 95%CI = 0.97─1.02), T. mentagrophytes var interdigitale (1.00, 95%CI = 0.98─1.02), and Microsporum canis (0.97, 95%CI = 0.89─1.04) showed high accuracy in detected clinical dermatophytes. Moreover, a library with self-built database set up by laboratories showed higher accuracy than commercial database, and 15-day cultivation for dermatophytes showed highest accuracy considering culture time. High heterogeneity was observed and decreased only with the subgroup analysis of species. The subgroup analysis of mass spectrometry, library database, and culture time also exhibited high heterogeneity. In summary, our results showed that MALDI-TOF MS could be used for highly accurate detection of clinically pathogenic dermatophytes, which could be an alternative diagnostic method in addition to morphological and molecular methods. LAY ABSTRACT This meta-analysis comprehensively investigated the qualitative accuracy of clinical dermatophytes through MALDI-TOF MS. Owing to the high accuracy observed at both genus and species levels, this approach could be an alternative diagnostic method in addition to morphological and molecular methods.
Collapse
Affiliation(s)
- Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xihuan Sun
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
2
|
Shaw D, Ghosh AK, Paul S, Singh S, Chakrabarti A, Kaur H, Narang T, Dogra S, Rudramurthy SM. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: Protocol standardisation, comparison and database expansion for faster and reliable identification of dermatophytes. Mycoses 2021; 64:926-935. [PMID: 33851439 DOI: 10.1111/myc.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Accurate and early identification of dermatophytes enables prompt antifungal therapy. However, phenotypic and molecular identification methods are time-consuming. MALDI-TOF MS-based identification is rapid, but an optimum protocol is not available. OBJECTIVES To develop and validate an optimum protein extraction protocol for the efficient and accurate identification of dermatophytes by MALDI-TOF MS. MATERIALS/METHODS Trichophyton mentagrophytes complex (n = 4), T. rubrum (n = 4) and Microsporum gypseum (n = 4) were used for the optimisation of protein extraction protocols. Thirteen different methods were evaluated. A total of 125 DNA sequence confirmed clinical isolates of dermatophytes were used to create and expand the existing database. The accuracy of the created database was checked by visual inspection of MALDI spectra, MSP dendrogram and composite correlation index matrix analysis. The protocol was validated further using 234 isolates. RESULT Among 13 protein extraction methods, six correctly identified dermatophytes but with a low log score (≤1.0). The modified extraction protocol developed provided an elevated log score of 1.6. Significant log score difference was observed between the modified protocol and other existing protocols (T. mentagrophytes complex: 1.6 vs. 0.2-1.0, p < .001; T. rubrum: 1.6 vs. 0.4-1.0, p < .001; M. gypseum:1.6 vs. 0.2-1.0, p < .001). Expansion of the database enabled the identification of all 234 isolates (73.5% with log score ≥2.0 and 26.4% with log scores range: 1.75-1.99). The results were comparable to DNA sequence-based identification. CONCLUSION MALDI-TOF MS with an updated database and efficient protein extraction protocol developed in this study can identify dermatophytes accurately and also reduce the time for identifying them.
Collapse
Affiliation(s)
- Dipika Shaw
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Grégory D, Chaudet H, Lagier JC, Raoult D. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota. Expert Rev Proteomics 2018; 15:217-229. [PMID: 29336192 DOI: 10.1080/14789450.2018.1429271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Describing the human hut gut microbiota is one the most exciting challenges of the 21st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.
Collapse
Affiliation(s)
- Dubourg Grégory
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Hervé Chaudet
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Jean-Christophe Lagier
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Didier Raoult
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| |
Collapse
|
4
|
Cimmino T, Le Page S, Raoult D, Rolain JM. Contemporary challenges and opportunities in the diagnosis and outbreak detection of multidrug-resistant infectious disease. Expert Rev Mol Diagn 2016; 16:1163-1175. [PMID: 27690721 DOI: 10.1080/14737159.2016.1244005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The dissemination of multi-drug resistant bacteria (MDRB) has become a major public health concern worldwide because of the increase in infections caused by MDRB, the difficulty in treating them, and expenditures in patient care. Areas covered: We have reviewed challenges and contemporary opportunities for rapidly confronting infections caused by MDRB in the 21st century, including surveillance, detection, identification of resistance mechanisms, and action steps. Expert commentary: In this context, the first critical point for clinical microbiologists is to be able to rapidly detect an abnormal event, an outbreak and/or the spread of a MDRB with surveillance tools so that healthcare policies and therapies adapted to a new stochastic event that will certainly occur again in the future can be implemented.
Collapse
Affiliation(s)
- Teresa Cimmino
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Stéphanie Le Page
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Didier Raoult
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Jean-Marc Rolain
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| |
Collapse
|
5
|
L'Ollivier C, Ranque S. MALDI-TOF-Based Dermatophyte Identification. Mycopathologia 2016; 182:183-192. [PMID: 27734185 DOI: 10.1007/s11046-016-0080-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023]
Abstract
MALDI-TOF MS has become increasingly popular for microorganism identification in the routine laboratory. Compared with conventional morphology-based techniques, MALDI-TOF is relatively inexpensive (per-unit identification), involves a rapid result turnaround time and yields more accurate results without the need for highly qualified staff. However, this technology has been technically difficult to implement for filamentous fungi identification. Identification of dermatophytes, a type of filamentous fungi, remains particularly challenging, partly due to the lack of clear species definition for some taxa or within some species complexes. Review of the ten studies published between 2008 and 2015 shows that the accuracy of MALDI-TOF MS-based identification varied between 13.5 and 100 % for dermatophytes. This variability was partly due to inconsistencies concerning critical steps of the routine clinical laboratory process. Use of both a complete formic acid-acetonitrile protein extraction step and a manufacturer library supplemented with homemade reference spectra is essential for an accurate species identification. This technique is conversely unaffected by variations in other routine clinical laboratory conditions such as culture medium type, incubation time and type of mass spectrometry instrument. Provided that a reference spectra library is adequate for dermatophyte identification, MALDI-TOF MS identification is more economical and offers an accuracy comparable to that of DNA sequencing. The technique also represents an advantageous alternative to the protracted and labor-intensive dermatophyte identification via macroscopic and microscopic morphology in the routine clinical laboratory.
Collapse
Affiliation(s)
- Coralie L'Ollivier
- Aix-Marseille University, IP-TPT UMR MD3, 13885, Marseille, France.,Laboratory of Parasitology-Mycology, APHM CHU Timone, 13005, Marseille, France
| | - Stéphane Ranque
- Aix-Marseille University, IP-TPT UMR MD3, 13885, Marseille, France. .,Laboratory of Parasitology-Mycology, APHM CHU Timone, 13005, Marseille, France. .,Laboratoire de Parasitologie-Mycologie, AP-HM, CHU Timone, 264 rue Saint Pierre, 13385, Marseille, France.
| |
Collapse
|
6
|
Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl 2016; 10:982-993. [PMID: 27400768 DOI: 10.1002/prca.201600038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Within the past few years identification of bacteria by MALDI-TOF MS has become a standard technique in bacteriological laboratories for good reasons. MALDI-TOF MS identification is rapid, robust, automatable, and the per-sample costs are low. Yet, the spectra are very informative and the reliable identification of bacterial species is usually possible. Recently, new MS-based approaches for the identification of bacteria are emerging that are based on the detailed analysis of the bacterial proteome by high-resolution MS. These "proteotyping" approaches are highly discriminative and outperform MALDI-TOF MS-based identification in terms of specificity, but require a laborious proteomic workflow and far more expertise and sophisticated instrumentation than identification on basis of MALDI-TOF MS spectra, which can be obtained with relative simple and uncostly linear MALDI-TOF mass spectrometers. Thus MALDI-TOF MS identification of bacteria remains an attractive option for routine diagnostics. Additionally, MALDI-TOF MS identification protocols have been extended and improved in many respects making linear MALDI-TOF MS a versatile tool that can be useful beyond the identification of a bacterial species, e.g. for the characterization of leucocytes and arthropod vectors of infectious diseases. This review focuses on such improvements and extensions of the typical MALDI-TOF MS workflow in the field of infectious diseases.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health Südufer, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Gautier M, Normand AC, Ranque S. Previously unknown species of Aspergillus. Clin Microbiol Infect 2016; 22:662-9. [PMID: 27263029 DOI: 10.1016/j.cmi.2016.05.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
Abstract
The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care.
Collapse
Affiliation(s)
- M Gautier
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France; Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - A-C Normand
- Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - S Ranque
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France; Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
8
|
Alcaine SD, Tilton L, Serrano MAC, Wang M, Vachet RW, Nugen SR. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens. Appl Microbiol Biotechnol 2015; 99:8177-85. [PMID: 26245682 DOI: 10.1007/s00253-015-6867-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 11/27/2022]
Abstract
Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.
Collapse
Affiliation(s)
- S D Alcaine
- Department of Food Science, University of Massachusetts, 246 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | | | | | | | | | | |
Collapse
|
9
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
10
|
Fall B, Lo CI, Samb-Ba B, Perrot N, Diawara S, Gueye MW, Sow K, Aubadie-Ladrix M, Mediannikov O, Sokhna C, Diemé Y, Chatellier S, Wade B, Raoult D, Fenollar F. The ongoing revolution of MALDI-TOF mass spectrometry for microbiology reaches tropical Africa. Am J Trop Med Hyg 2015; 92:641-7. [PMID: 25601995 DOI: 10.4269/ajtmh.14-0406] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hôpital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.7%) and 206 fungi (8.5%) at the species level, 109 bacteria (4.5%) at the genus level, and 16 bacteria (0.75%) at the family level. Sixteen isolates remained unidentified (0.75%). Escherichia coli was the most prevalent species (25.8%) followed by Klebsiella pneumoniae (14.8%), Streptococcus agalactiae (6.2%), Acinetobacter baumannii (6.1%), Pseudomonas aeruginosa (5.9%), and Staphylococcus aureus (5.9%). MALDI-TOF MS has also enabled the detection of rare bacteria and fungi. MALDI-TOF MS is a powerful tool for the identification of bacterial and fungal species involved in infectious diseases in tropical Africa.
Collapse
Affiliation(s)
- Bécaye Fall
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Cheikh Ibrahima Lo
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Bissoume Samb-Ba
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Nadine Perrot
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Silman Diawara
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Mamadou Wague Gueye
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Kowry Sow
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Maxence Aubadie-Ladrix
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Oleg Mediannikov
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Cheikh Sokhna
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Yaya Diemé
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Sonia Chatellier
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Boubacar Wade
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Didier Raoult
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| | - Florence Fenollar
- Hôpital Principal, Dakar, Sénégal; Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, Research Institute for Development 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France; bioMérieux, La Balme-Les-Grottes, France
| |
Collapse
|