1
|
Lu C, Mo L, Li X, DU G, Chen Z, Wu F, Cai L, DU Q, Tang G. EFFECTS OF LOW-LEVEL LIGHT THERAPY ON PAIN AND RELATED LESIONS IN PATIENTS WITH ORAL LICHEN PLANUS: A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract 2025; 25:102126. [PMID: 40335193 DOI: 10.1016/j.jebdp.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Oral lichen planus (OLP) is a relatively common immunological mucocutaneous disease that causes pain, burning sensations and poor quality of life. The use of low-level light therapy (LLLT) to treat OLP is still debated. This systematic review and meta-analysis aimed to systematically and quantitatively assess the efficacy of LLLT in the treatment of OLP. METHODS The PubMed, Embase, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Cochrane Library, and Web of Science electronic databases were searched up to February 28, 2023, to identify randomized controlled trials (RCTs) examining the use of LLLT in OLP patients reporting pain or other outcomes. The mean difference (MD) or log risk ratio (log RR) with 95% confidence intervals (CIs) were estimated separately for each outcome to determine the effect sizes. Subgroup analysis was used to detect the sources of heterogeneity. Sensitivity analysis was used to test the robustness of the pooled results. Funnel plots, Egger's test, and Begg's test were used to test publication bias. All the statistical analyses were performed using Stata 16.0 software. A graph of risk of bias was drawn using RevMan 5.4.1 software for the assessment of bias. RESULTS A total of twelve RCTs were included in this systematic review, 7 of which were also included in the meta-analysis. Among the included studies, 1 had a low risk of bias, whereas 7 had an unclear risk of bias. The meta-analysis results indicated that LLLT significantly improved long-term analgesic efficacy (over 12 weeks posttreatment, measured by the visual analogue scale; MD = -1.20, 95% CI -2.01 to -0.38, P < .001), whereas no significant changes were observed in either the short term (MD = -0.68, 95% CI -1.38 to 0.01, P = .05) or the medium term (MD = -0.89, 95% CI -1.96 to 0.17, P = .10). Furthermore, LLLT improved the clinical severity of lesions (as assessed by the biopsy sign scores or reticular atrophic erosive scores; MD = -1.13, 95% CI -1.62 to -0.63, P < .001) and reduced the recurrence rate (log RR = -1.34, 95% CI -2.30 to -0.37, P = .01). Additionally, there were no statistically significant differences in the clinical response rate (measured by efficacy indices; log RR = -0.12, 95% CI -0.37 to 0.13, P = .35). No adverse events related to LLLT were reported. CONCLUSION LLLT appears to alleviate pain, enhance the clinical outcomes of OLP lesions, and lower the likelihood of relapse in OLP patients. Future research should focus on longer intervention courses, larger sample sizes, and multidisciplinary intervention designs. SYSTEMATIC REVIEW REGISTRATION This meta-analysis was registered on PROSPERO (CRD42023384852).
Collapse
Affiliation(s)
- Chenghui Lu
- Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Core Unit of National Clinical Research Center for Oral Diseases, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lanqing Mo
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Guilin Medical University, Guilin, China
| | - Xin Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Guanhuan DU
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengquan Chen
- Department of Nursing and Allied Health, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Fan Wu
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Cai
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing DU
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Guoyao Tang
- Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Core Unit of National Clinical Research Center for Oral Diseases, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Marcianò G, Vocca C, Dıraçoğlu D, Sevgin RÖ, Gallelli L. Escin's Action on Bradykinin Pathway: Advantageous Clinical Properties for an Unknown Mechanism? Antioxidants (Basel) 2024; 13:1130. [PMID: 39334789 PMCID: PMC11429163 DOI: 10.3390/antiox13091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Escin, extracted from horse chestnut (Aesculus hippocastanum) has anti-edema and anti-inflammatory effects. It is used to treat several clinical conditions, including venous insufficiency, pain, inflammation, and edema. Considering escin's pharmacodynamic, the inhibition of the bradykinin pathway represents a particular effect, decreasing the local edema and conferring an advantage in comparison to other compounds. In this narrative review, we described the effects of escin considering its effects on bradykinin pathway.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Operative Unit of Pharmacology and Pharmacovigilance, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy; (G.M.); (C.V.)
| | - Cristina Vocca
- Operative Unit of Pharmacology and Pharmacovigilance, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy; (G.M.); (C.V.)
| | - Demirhan Dıraçoğlu
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (D.D.); (R.Ö.S.)
| | - Rotinda Özdaş Sevgin
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (D.D.); (R.Ö.S.)
| | - Luca Gallelli
- Operative Unit of Pharmacology and Pharmacovigilance, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy; (G.M.); (C.V.)
- Department of Health Science, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Zhang Y, Ji Q. Current advances of photobiomodulation therapy in treating knee osteoarthritis. Front Cell Dev Biol 2023; 11:1286025. [PMID: 38033853 PMCID: PMC10687633 DOI: 10.3389/fcell.2023.1286025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Knee osteoarthritis (KOA) is manifested by low-grade joint inflammation, irreversible cartilage degeneration, subchondral bone remodeling and osteophyte formation. It is one of the most prevalent degenerative diseases in the elderly. KOA usually results in chronic joint pain, physical impairment even disability bringing a huge socioeconomic burden. Unfortunately, there is so far no effective interventions to delay the progression and development of KOA. There is a pressing need for explorations and developments of new effective interventions. Photobiomodulation therapy (PBMT), also known as low-level light therapy (LLLT), has attracted widespread attention in treating KOA because it is drug-free, non-invasive, safe and useful with rarely reported side effects. It provides the biological stimulatory effects primarily by enhancing the activity of mitochondrial cytochrome c oxidase. This stimulation, in turn, fosters cell proliferation and tissue regeneration. In addition to this, the paper provides a concise overview of the light parameters and the effectiveness of PBMT when applied in the treatment of KOA patients in clinical settings. It also delves into the experimental evidence supporting the modulatory effects of PBMT and its potential underlying mechanisms in addressing synovitis, cartilage degeneration, and pain resolution.
Collapse
Affiliation(s)
| | - Quanbo Ji
- Department of Orthopedics, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
4
|
Kitchen LC, Berman M, Halper J, Chazot P. Rationale for 1068 nm Photobiomodulation Therapy (PBMT) as a Novel, Non-Invasive Treatment for COVID-19 and Other Coronaviruses: Roles of NO and Hsp70. Int J Mol Sci 2022; 23:ijms23095221. [PMID: 35563611 PMCID: PMC9105035 DOI: 10.3390/ijms23095221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/08/2023] Open
Abstract
Researchers from across the world are seeking to develop effective treatments for the ongoing coronavirus disease 2019 (COVID-19) outbreak, which arose as a major public health issue in 2019, and was declared a pandemic in early 2020. The pro-inflammatory cytokine storm, acute respiratory distress syndrome (ARDS), multiple-organ failure, neurological problems, and thrombosis have all been linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fatalities. The purpose of this review is to explore the rationale for using photobiomodulation therapy (PBMT) of the particular wavelength 1068 nm as a therapy for COVID-19, investigating the cellular and molecular mechanisms involved. Our findings illustrate the efficacy of PBMT 1068 nm for cytoprotection, nitric oxide (NO) release, inflammation changes, improved blood flow, and the regulation of heat shock proteins (Hsp70). We propose, therefore, that PBMT 1068 is a potentially effective and innovative approach for avoiding severe and critical illness in COVID-19 patients, although further clinical evidence is required.
Collapse
Affiliation(s)
- Lydia C. Kitchen
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marvin Berman
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - James Halper
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - Paul Chazot
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
- Correspondence:
| |
Collapse
|
5
|
Oliveira S, Andrade R, Hinckel BB, Silva F, Espregueira-Mendes J, Carvalho Ó, Leal A. In Vitro and In Vivo Effects of Light Therapy on Cartilage Regeneration for Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1700S-1719S. [PMID: 33855869 PMCID: PMC8804850 DOI: 10.1177/19476035211007902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To analyze the effects of light therapy (LT) on cartilage repair for knee osteoarthritis (OA) treatment. DESIGN The PubMed, Embase, Scopus, and Web of Science databases were searched up to August 31, 2020 to identify in vitro and in vivo studies that analyzed the effects of LT on knee cartilage for OA treatment. The study and sample characteristics, LT intervention parameters and posttreatment outcomes were analyzed. Risk of bias was assessed using the Risk of Bias Assessment for Non-randomized Studies (RoBANS) tool. RESULTS Three in vitro and 30 in vivo studies were included. Most studies were judged as high risk of performance and detection bias. Biochemical outcomes were analyzed for both in vitro and in vivo studies, and histological and behavioral outcomes were analyzed for in vivo studies. LT reduced extracellular matrix (ECM) degradation, inflammation, and OA progression, promoting ECM synthesis. LT improved pain-like behavior in animal models, having no apparent effect on gait performance. There were conflicting findings of some of the biochemical, histological, and behavioral outcomes. CONCLUSION The included studies presented different strategies and LT parameters. LT resulted in positive effects on cartilage repair and may be an adequate therapy for OA treatment.
Collapse
Affiliation(s)
- Sofia Oliveira
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes
Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal,Dom Henrique Research Centre, Porto,
Portugal,Faculty of Sports, University of Porto,
Porto, Portugal
| | - Betina B. Hinckel
- Department of Orthopaedic Surgery,
William Beaumont Hospital, Royal Oak, MI, USA
| | - Filipe Silva
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes
Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal,Dom Henrique Research Centre, Porto,
Portugal,ICVS/3B’s-PT Government Associate
Laboratory, Braga/Guimarães, Portugal,3Bs Research Group–Biomaterials,
Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence
on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães,
Portugal,School of Medicine, University of
Minho, Braga, Portugal
| | - Óscar Carvalho
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Ana Leal
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal,Dom Henrique Research Centre, Porto,
Portugal,Ana Leal, Center for MicroElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Azurém Campus, Guimarães, 4800-058,
Portugal.
| |
Collapse
|
6
|
Balbinot G, Schuch CP, do Nascimento PS, Lanferdini FJ, Casanova M, Baroni BM, Vaz MA. Photobiomodulation Therapy Partially Restores Cartilage Integrity and Reduces Chronic Pain Behavior in a Rat Model of Osteoarthritis: Involvement of Spinal Glial Modulation. Cartilage 2021; 13:1309S-1321S. [PMID: 31569995 PMCID: PMC8804719 DOI: 10.1177/1947603519876338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Chronic pain associated with osteoarthritis (OA) often leads to reduced function and engagement in activities of daily living. Current pharmacological treatments remain relatively ineffective. This study investigated the efficacy of photobiomodulation therapy (PBMT) on cartilage integrity and central pain biomarkers in adult male Wistar rats. DESIGN We evaluated the cartilage degradation and spinal cord sensitization using the monoiodoacetate (MIA) model of OA following 2 weeks of delayed PBMT treatment (i.e., 15 days post-MIA). Multiple behavioral tests and knee joint histology were used to assess deficits related to OA. Immunohistochemistry was performed to assess chronic pain sensitization in spinal cord dorsal horn regions. Furthermore, we analyzed the principal components related to pain-like behavior and cartilage integrity. RESULTS MIA induced chronic pain-like behavior with respective cartilage degradation. PBMT had no effects on overall locomotor activity, but positive effects on weight support (P = 0.001; effect size [ES] = 1.01) and mechanical allodynia (P = 0.032; ES = 0.51). Greater optical densitometry of PBMT-treated cartilage was evident in superficial layers (P = 0.020; ES = 1.34), likely reflecting the increase of proteoglycan and chondrocyte contents. In addition, PBMT effects were associated to decreased contribution of spinal glial cells to pain-like behavior (P = 0.001; ES = 0.38). CONCLUSION PBMT during the chronic phase of MIA-induced OA promoted cartilage recovery and reduced the progression or maintenance of spinal cord sensitization. Our data suggest a potential role of PBMT in reducing cartilage degradation and long-term central sensitization associated with chronic OA.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Neuroscience Graduate Program,
Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da
Saúde, Porto Alegre, RS, Brazil,Brain Institute, Universidade Federal do
Rio Grande do Norte (UFRN), Natal, RN, Brazil,Gustavo Balbinot, Federal University of Rio
Grande do Norte, Av. Nascimento de Castro, 2155 - 59056-450 Natal, RN, Brazil.
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation
Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto
Alegre, RS, Brazil
| | - Patricia Severo do Nascimento
- Neuroscience Graduate Program,
Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da
Saúde, Porto Alegre, RS, Brazil,Universidade Federal de Santa Maria
(UFSM), Santa Maria, RS, Brazil
| | - Fabio Juner Lanferdini
- Exercise Research Laboratory,
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mayra Casanova
- Exercise Research Laboratory,
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruno Manfredini Baroni
- Graduate Program in Rehabilitation
Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto
Alegre, RS, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory,
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Vassão PG, de Souza ACF, da Silveira Campos RM, Garcia LA, Tucci HT, Renno ACM. Effects of photobiomodulation and a physical exercise program on the expression of inflammatory and cartilage degradation biomarkers and functional capacity in women with knee osteoarthritis: a randomized blinded study. Adv Rheumatol 2021; 61:62. [PMID: 34656170 DOI: 10.1186/s42358-021-00220-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The knee osteoarthritis (OA) is a joint disease characterized by degradation of articular cartilage that leads to chronic inflammation. Exercise programs and photobiomodulation (PBM) are capable of modulating the inflammatory process of minimizing functional disability related to knee OA. However, their association on the concentration of biomarkers related to OA development has not been studied yet. The aim of the present study is to investigate the effects of PBM (via cluster) with a physical exercise program in functional capacity, serum inflammatory and cartilage degradation biomarkers in patients with knee OA. METHODS Forty-two patients were randomly allocated in 3 groups: ESP: exercise + sham PBM; EAP: exercise + PBM and CG: control group. Six patients were excluded before finished the experimental period. The analyzed outcomes in baseline and 8-week were: the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) and the evaluation of serum biomarkers concentration (IL-1β, IL-6, IL-8, IL-10 e TNF-α, and CTX-II). RESULTS An increase in the functional capacity was observed in the WOMAC total score for both treated groups (p < 0.001) and ESP presents a lower value compared to CG (p < 0.05) the 8-week post-treatment. In addition, there was a significant increase in IL-10 concentration of EAP (p < 0.05) and higher value compared to CG (p < 0.001) the 8-week post-treatment. Moreover, an increase in IL-1β concentration was observed for CG (p < 0.05). No other difference was observed comparing the other groups. CONCLUSION Our data suggest that the physical exercise therapy could be a strategy for increasing functional capacity and in association with PBM for increasing IL-10 levels in OA knee individuals. TRIAL REGISTRATION ReBEC (RBR-7t6nzr).
Collapse
Affiliation(s)
- Patricia Gabrielli Vassão
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
| | - Ana Carolina Flygare de Souza
- Department of Human Movement Science, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Raquel Munhoz da Silveira Campos
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.,Post Graduate Program of Interdisciplinary Health Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Livia Assis Garcia
- Scientific Institute and Technological Department -University Brazil, São Paulo-Itaquera, SP, Brazil
| | - Helga Tatiana Tucci
- Department of Human Movement Science, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| |
Collapse
|
8
|
Nambi G. Does low level laser therapy has effects on inflammatory biomarkers IL-1β, IL-6, TNF-α, and MMP-13 in osteoarthritis of rat models-a systemic review and meta-analysis. Lasers Med Sci 2021; 36:475-484. [PMID: 32833088 DOI: 10.1007/s10103-020-03124-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and is considered as the most common cause of pain and disability. To the best of our knowledge, it is generally observed that there is a lack of evidence on the effects of low-level laser therapy (LLLT) on inflammatory cytokines in OA. The present review aims to appraise the current evidence of efffects of LLLT on inflammatory cytokines in OA of the knee. Medical databases such as Medline, PubMed, EMBASE, PEDro CINAHL, Web of Science, Cochrane register, and Google reference were searched from its inception to June 2019. Articles that meet the inclusion criteria: subjects (animals-Wistar rats) induced with OA; rats with age group of 50-90 days; weight of 150-300 g; finding the effects of LLLT; reporting inflammatory cytokines; and articles written in English were included. The reviewers assessed the methodological quality of the primary studies. Data of inflammatory cytokines IL-1β, IL-6, TNF-α, and MMP-13 were extracted for analysis. The Q (x2) test and I2 statistics analysis were performed to find the heterogeneity evaluation. Standard mean difference (SMD) and its 95% confidence interval (CI) were used to synthesize the data. Two hundred eleven potential articles were identified and 186 articles were excluded based on the selection criteria. The rest of the 25 articles were read and 8 articles were selected for further study. From the study, it is observed that the laser therapy group had mild to moderate improvement than control group in IL-1β, TNF-α, and MMP-13 (IL-1β; SMD 1.21 [95% CI - 0.278, 2.704], TNF-α; SMD 5.19 [95% CI 2.413, 7.961], and MMP-13 SMD - 1.45 [95% CI - 5.121, 2.211]), while IL-6 [SMD 3.11 (95% CI 0.662, 5.549] did not show any considerable improvement after laser therapy. The present review provides the evidence of LLLT-dependent reduction of IL-1β, TNF-α, and MMP-13, and its ability to modulate proliferation of inflammatory cells, which makes LLLT a suitable treatment for OA. Though the included studies showed a high heterogeneity in treatment parameter, the beneficial effect of LLLT on changes in inflammatory cytokines, such as IL-6, seems to be unaffected.
Collapse
Affiliation(s)
- Gopal Nambi
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
9
|
Vetrici MA, Mokmeli S, Bohm AR, Monici M, Sigman SA. Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial. J Inflamm Res 2021; 14:965-979. [PMID: 33776469 PMCID: PMC7989376 DOI: 10.2147/jir.s301625] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mariana A Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Soheila Mokmeli
- Training Institute, Canadian Optic and Laser Center, Victoria, BC, Canada
| | - Andrew R Bohm
- Department of Orthopedics, Lenox Hill Hospital, New York, NY, USA
| | - Monica Monici
- ASA Campus J.L., ASA Res. Division – Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Scott A Sigman
- Department of Orthopedics, Lowell General Hospital, Lowell, MA, 01863, USA
| |
Collapse
|
10
|
Vassão PG, Silva BA, de Souza MC, Parisi JR, de Camargo MR, Renno ACM. Level of pain, muscle strength and posture: effects of PBM on an exercise program in women with knee osteoarthritis - a randomized controlled trial. Lasers Med Sci 2020; 35:1967-1974. [PMID: 32157582 DOI: 10.1007/s10103-020-02989-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
To evaluate the effectiveness of an exercise program associated to photobiomodulation (PBM) on pain, postural changes, functionally, and muscular strength in women, one of the risk factors, with knee osteoarthritis (OA). A randomized controlled trial, with a blinded assessor and intention-to-treat analysis and placebo control. Sixty-two participants with knee OA (with confirmed radiological diagnosis) were evaluated for this study. However, 34 were considered eligible and were randomized into two groups: EPPG - exercise and PBM placebo group (n = 17) and EPAG - exercise and PBM active group (n = 16), but one participant was excluded of EPAG. The exercise program and PBM (808 nm, 100 mW/point, 4 J/point, 56 J total, 91 J/cm2) were realized twice a week, during 8 weeks. West Ontario and the McMaster University Osteoarthritis Index (WOMAC) and Lequesne questionnaires, 1-repetition maximum test (1-RM) and posture evaluation software (SAPO) were used to analyze the effects of the therapies. In intragroup analysis, a significant improvement in pain WOMAC (p < 0.001), stiffness (p < 0.001), function (p < 0.001), Lequesne (p < 0.001), and 1-RM (all muscle groups) (p < 0.001) were observed. In this study, the exercise program improved pain, function, and muscle strength of all the participants. However, PBM, in the parameters used, did not optimize the effects of the exercise program in women with knee OA.
Collapse
Affiliation(s)
- Patricia Gabrielli Vassão
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
| | - Bruna Arcaim Silva
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Mayra Cavenague de Souza
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Marcela Regina de Camargo
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| |
Collapse
|
11
|
Oliveira CG, Freitas MF, de Sousa MVP, Giorgi R, Chacur M. Photobiomodulation reduces nociception and edema in a CFA-induced muscle pain model: effects of LLLT and LEDT. Photochem Photobiol Sci 2020; 19:1392-1401. [PMID: 33048106 DOI: 10.1039/d0pp00037j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photobiomodulation therapy (PBMT) is an effective therapeutic strategy and a noninvasive method to improve the regulation of inflammation and pain. Our aim was to examine the effects of different doses of PBMT on improvement of edematogenic and nociceptive responses in a myositis model in rats. We administered complete Freund's adjuvant (CFA) into the gastrocnemius muscle (GS) of rats to induce myositis and observe the effect of PBMT using different doses of energy and two types of light sources, a low-level laser (LLL) and light emitting diodes (LED). For this, we evaluated the effects of these different energies to improve nociceptive and edematogenic responses using behavioural tests. In addition, we analysed histological images in animals with myositis induced by CFA. The administration of CFA to the GS induced increased cellular infiltrates, edema and a nociceptive response when compared to animals without myositis. When we treated the CFA-induced myositis animals with PBMT (LLLT or LEDT), we observed a decrease in nociception and edema formation. Our results demonstrated that only the major energy for both the LED and LLL was able to remain in a homogeneous form throughout the period analyzed. Based on our results, we suggest that both LLLT and LEDT using the highest dose (3 J) could be an alternative treatment for myositis in rats.
Collapse
Affiliation(s)
- Camilla Garcia Oliveira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Brazil.
| | | | | | - Renata Giorgi
- Laboratory of Pathophysiology, Butantan Institute, Brazil.
| | - Marucia Chacur
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Brazil.
| |
Collapse
|
12
|
Pigatto GR, Quinteiro MH, Nunes‐de‐Souza RL, Coimbra NC, Parizotto NA. Low‐Intensity Photobiomodulation Decreases Neuropathic Pain in Paw Ischemia‐Reperfusion and Spared Nervus Ischiadicus Injury Experimental Models. Pain Pract 2020; 20:371-386. [DOI: 10.1111/papr.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Glauce R. Pigatto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Maiara H.S. Quinteiro
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Ricardo L. Nunes‐de‐Souza
- Laboratory of Neuropsychopharmacology School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Norberto C. Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology Department of Pharmacology Ribeirão Preto Medical School of the University of São Paulo (FMRP‐USP) Ribeirão Preto Brazil
| | - Nivaldo A. Parizotto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
- Department of Physical Therapy Federal University of São Carlos (UFSCar) São Carlos Brazil
- Biomedical Engineering Program University of Brasil (UNIBRASIL) São Paulo Brazil
| |
Collapse
|
13
|
Photobiostimulation activity of different low-level laser dosage on masticatory muscles and temporomandibular joint in an induced arthritis rat model. Lasers Med Sci 2019; 35:1129-1139. [PMID: 31834562 DOI: 10.1007/s10103-019-02933-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
This study aimed to investigate the anti-inflammatory effects of different dosage of low-level laser therapy (LLLT) in an experimental model of temporomandibular joint (TMJ) arthritis. One hundred male Wistar rats were used and divided into the following groups: CG, control group; AG, animals group with left TMJ arthritis induced by intra-articular injection of Complete Freund's adjuvant - CFA; LG5, LG10 and LG20 - animals with arthritis and treated with LLLT at doses 5, 10, and 20 J/cm2, respectively. Morphological analysis was performed by TMJ histological sections stained with hematoxylin-eosin (HE), picrosirius (PSR), and toluidine blue (TB), as well as histomorphometric evaluation of cartilage, articular disc, and masticatory muscles. The amount of feed consumed within 3 weeks was evaluated, and biochemical analysis of TMJ tissues included measurement of sulfated glycosaminoglycans (GAGs), matrix metalloproteinases (MMPs) 2 and 9 zymography, and ELISA for cytokines IL-6, TNF-α, and IL-1β. Only the 20 J/cm2 dose promoted higher feed intake compared to AG. On the other hand, all LLLT doses promoted better organization of articular disc collagen fibers, greater number of proteoglycans in articular cartilage, increased area and diameter of left lateral pterygoid fibers, reduced latent and active MMP 9 and 2 activity, and lower IL-1β concentration compared to AG. Considering the study limitations, it was observed that LLLT treatments were effective in protecting and tissue cleansing joint structures, accelerating tissue repair, especially at lower doses.
Collapse
|
14
|
Pigatto GR, Silva CS, Parizotto NA. Photobiomodulation therapy reduces acute pain and inflammation in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111513. [PMID: 31136885 DOI: 10.1016/j.jphotobiol.2019.111513] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) is a therapy suggested for the treatment of pain and inflammation. Different mechanisms have been proposed to explain the analgesic and inflammatory effects of photobiomodulation, but there are still gaps on the mechanisms underlying. The objective was to investigate the analgesic and anti-inflammatory effect of red LED, as well as to investigate the possible mechanism of action in acute nociception models. Radiation was applied with red LED (660 nm, 215 mW, 84.64 mW/cm2, 2.531 J/cm2 (30s); 5.07 J/cm2 (60s) 7.61 J/cm2 (90s) and 10.15 J/cm2 (120 s)). The red LED applied 60 s before the experiments, promoted reduction of the nociceptive neurogenic (1st phase) and inflammatory pain (2nd phase) induced by intraplantar (i.pl.) injection of formalin. This effect duration in the second phase was 180 min after pretreatment of the LED. Red LED also reduced nociception induced by intraperitoneal injection of acetic acid. Furthermore, red LED prevented nociception induced by i.pl. injection of cinnamaldehyde, capsaicin, menthol and acidified saline. It was demonstrate the involvement of glutamatergic system with the reduction the nociception induced by glutamate. The red LED was able to prevent nociception induced by intracellular signaling cascades activators, phorbol 12-myristate 13-acetate (PMA), bradykinin, forskolin and prostaglandin. In addition, red LED, respectively, from 30 to 90s demonstrated an antiedematogenic effect on ear edema and reduction the migration of inflammatory cells induced by single application of croton oil. Thus, the new findings in this study support some underlying mechanism by which red LED phototherapy reduces acute pain. However, need further clarification regarding analgesic and anti-inflammatory effect of the photobiomodulation in preclinical studies.
Collapse
Affiliation(s)
- Glauce Regina Pigatto
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil
| | - Carolina Seabra Silva
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil
| | - Nivaldo Antonio Parizotto
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil; Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil; Biomedical Engineering Program, University of Brasil (UNIBRASIL), São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Shanks S, Leisman G. Perspective on Broad-Acting Clinical Physiological Effects of Photobiomodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:41-52. [PMID: 29572678 DOI: 10.1007/5584_2018_188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research into photobiomodulation reveals beneficial effects of light therapy for a rapidly expanding list of medical conditions and illnesses. Although it has become more widely accepted by the mainstream medicine, the effects and mechanisms of action appear to be poorly understood. The therapeutic benefits of photobiomodulation using low-energy red lasers extend far beyond superficial applications, with a well-described physics allowing an understanding of how red lasers of certain optimum intensities may cross the cranium. We now have a model for explaining potential therapeusis for applications in functional neurology that include stroke, traumatic brain injury, and neurodegenerative conditions in addition to the currently approved functions in lipolysis, in onychomycosis treatment, and in pain management.
Collapse
Affiliation(s)
| | - Gerry Leisman
- Faculty of Health Sciences, University of Haifa, Haifa, Israel. .,National Institute for Brain & Rehabilitation Sciences, Nazareth, Israel.
| |
Collapse
|
16
|
Chondroitin sulfate and glucosamine sulfate associated to photobiomodulation prevents degenerative morphological changes in an experimental model of osteoarthritis in rats. Lasers Med Sci 2017; 33:549-557. [DOI: 10.1007/s10103-017-2401-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022]
|
17
|
Paiva ADCM, da Fonseca ADS. Could adverse effects and complications of selective laser trabeculoplasty be decreased by low-power laser therapy? Int Ophthalmol 2017; 39:243-257. [PMID: 29189945 DOI: 10.1007/s10792-017-0775-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
Selective laser trabeculoplasty (SLT) has been used for treatment of primary open-angle glaucoma, ocular hypertension, pigmenter and pseudoexfoliative glaucoma being considered a low-risk procedure. Therefore, transitory and permanent adverse effects have been reported, including corneal changes, subclinical edema, and reduction in endothelial cells and in central corneal thickness. Despite rarer, serious corneal complications after SLT can be permanent and lead to visual impairment, central corneal haze, opacity and narrowing. The mechanism involves increase of vasoactive and chemotactic cytokines causing inflammatory infiltrate, destruction of stromal collagen by fibroblasts and increase of matrix metalloproteinases type 2, which impair reepithelization. SLT also increases free radical production and reduces antioxidant enzymes, resulting in endothelium damages. Low-power laser therapy (LPLT) has been used in regenerative medicine based on its biostimulatory and anti-inflammatory effects. Biostimulation occurs through the interaction of laser photons with cytochrome C oxidase enzyme, which activates intracellular biochemical cascades causing synthesis of a number of molecules related to anti-inflammatory, regenerative effects, pain relief and reduction in edema. It has been showed that LPLT reduces gene expression related to pro-inflammatory cytokines and matrix metalloproteinases, and it increases expression of growth factors related to its proliferative and healing actions. Although radiations emitted by low-power lasers are considered safe and able to induce therapeutic effects, researches based on experimental models for glaucoma could bring important data if LPLT could be an alternative approach to improve acceptation for patients undergoing SLT.
Collapse
Affiliation(s)
- Alexandre de Carvalho Mendes Paiva
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Centro, Rio de Janeiro, 20211040, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Centro, Rio de Janeiro, 20211040, Brazil. .,Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, 4º andar, Vila Isabel, Rio de Janeiro, 20551030, Brazil. .,Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| |
Collapse
|