1
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
2
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
3
|
Photobiomodulation combined with adipose-derived stem cells encapsulated in methacrylated gelatin hydrogels enhances in vivo bone regeneration. Lasers Med Sci 2021; 37:595-606. [PMID: 33839962 DOI: 10.1007/s10103-021-03308-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Reconstruction of bone defects is still a significant challenge. The aim of this study was to evaluate the effect of application of photobiomodulation (PBM) to enhance in vivo bone regeneration and osteogenic differentiation potential of adipose-derived stem cells (ADSCs) encapsulated in methacrylated gelatin (GEL-MA) hydrogels. Thirty-six Sprague-Dawley rats were randomly separated into 3 experimental groups (n = 12 each). The groups were control/blank defect (I), GEL-MA hydrogel (II), and ADSC-loaded GEL-MA (GEL-MA+ADSC) hydrogel (III). Biparietal critical sized bone defects (6 mm in size) are created in each animal. Half of the animals from each group (n = 6 each) were randomly selected for PBM application using polychromatic light in the near infrared region, 600-1200 nm. PBM was administered from 10 cm distance cranially in 48 h interval. The calvaria were harvested at the 20th week, and macroscopic, microtomographic, and histologic evaluation were performed for further analysis. Microtomographic evaluation demonstrated the highest result for mineralized matrix formation (MMF) in group III. PBM receiving samples of group III showed mean MMF of 79.93±3.41%, whereas the non-PBM receiving samples revealed mean MMF of 60.62±6.34 % (p=0.002). In terms of histologic evaluation of bone defect repair, the higher scores were obtained in the groups II and III when compared to the control group (2.0 for both PBM receiving and non-receiving specimens; p<0.001). ADSC-loaded microwave-induced GEL-MA hydrogels and periodic application of photobiomodulation with polychromatic light appear to have beneficial effect on bone regeneration and can stimulate ADSCs for osteogenic differentiation.
Collapse
|
4
|
Irmak G, Gümüşderelioğlu M. Patients- and tissue-specific bio-inks with photoactivated PRP and methacrylated gelatin for the fabrication of osteochondral constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112092. [PMID: 33965102 DOI: 10.1016/j.msec.2021.112092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
In osteochondral tissue engineering, while the biochemical and mechanical properties of hydrogels guide stem cell proliferation and differentiation, physical and chemical stimulators also affect the differentiation of stem cells. Herein, we presented a patient and tissue-specific strategy for the development of biomimetic osteochondral constructs with gradient compositions. Osteochondral constructs were fabricated by gradually printing of bio-inks consisting of therapeutic platelet-rich plasma (PRP), adipose tissue-derived mesenchymal stem cells (AdMSCs), and extracellular matrix (ECM) mimetic hydrogel, microwave-assisted methacrylated gelatin (Gel-MA). Periodic application of light in the near infrared region (600-1200 nm wavelength) was used to induce platelet activation and also AdMSCs' differentiation. Gel-MA has the same structure as type I collagen and PRP has cartilage tissue-specific bioactive components, so they provide the appropriate environment for the differentiation of AdMSCs to osteochondral tissue. Histology, immunocytochemistry, and biochemical analyses indicated enhanced glycosaminoglycan (GAG) and calcium content, mineralization, and ECM production. Furthermore, RT-PCR results indicated the expressions of bone- and cartilage-specific genes. In conclusion, the periodically photoactivated hydrogels with relatively low degradation rate and high mechanical strength, and tissue-specific biomimetic structure promoted in-vitro osteochondral tissue formation including hyaline and hypertrophic cartilage and bone phases.
Collapse
Affiliation(s)
- Gülseren Irmak
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
5
|
Miranda JM, de Arruda JAA, Moreno LMM, Gaião WDC, do Nascimento SVB, Silva EVDS, da Silva MB, Rodrigues CG, de Albuquerque DS, Braz R, Pinheiro ALB, Gerbi MEMDM. Photobiomodulation Therapy in the Proliferation and Differentiation of Human Umbilical Cord Mesenchymal Stem Cells: An In Vitro Study. J Lasers Med Sci 2020; 11:469-474. [PMID: 33425299 DOI: 10.34172/jlms.2020.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Since photobiomodulation therapy (PBMT) favors in vitro mesenchymal stem cell (MSC) preconditioning before MSC transplantation, increasing the proliferation of these cells without molecular injuries by conserving their characteristics, in the present in vitro study we analyzed the effect of PBMT on the proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs). Methods: Irradiation with an InGaAIP Laser (660 nm, 10 mW, 2.5 J/cm2 , 0.08 cm2 spot size, and 10 s) was carried out. The cells were divided into four groups: CONTROL [cells grown in Dulbecco's Modified Eagle Medium (DMEM)], OSTEO (cells grown in an osteogenic medium); PBMT (cells grown in DMEM+PBMT), and OSTEO+PBMT (cells grown in an osteogenic medium plus PBMT). The cell proliferation curve was obtained over periods of 24, 48 and 72 hours using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Osteogenic differentiation was analyzed by the formation of calcium nodules over periods of 7, 14 and 21 days. Morphometric analysis was performed to quantify the total area of nodular calcification. Results: The highest cell proliferation and cell differentiation occurred in the OSTEO+PBMT group, followed by the PBMT, OSTEO and CONTROL groups respectively, at the observed times (P <0.05). Conclusion: PBMT enhanced the osteogenic proliferation and the differentiation of hUCMSCs during the periods tested, without causing damage to the cells and preserving their specific characteristics, a fact that may represent an innovative pretreatment in the application of stem cells.
Collapse
Affiliation(s)
- Jéssica Meirinhos Miranda
- Laser Center, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil.,Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lara Marques Magalhães Moreno
- Laser Center, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil.,Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | | | - Sinval Vinícius Barbosa do Nascimento
- Laser Center, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil.,Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | - Eduardo Vinícius de Souza Silva
- Laser Center, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil.,Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | - Márcia Bezerra da Silva
- Department of Biophysics and Radiobiology, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Diana Santana de Albuquerque
- Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | - Rodivan Braz
- Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| | | | - Marleny Elizabeth Marquez de Martinez Gerbi
- Laser Center, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil.,Department of Restorative Dentistry and Endodontics, School of Dentistry, Universidade de Pernambuco, Camaragibe, PE, Brazil
| |
Collapse
|
6
|
Irmak G, Gümüşderelioğlu M. Photo-activated platelet-rich plasma (PRP)-based patient-specific bio-ink for cartilage tissue engineering. Biomed Mater 2020; 15:065010. [PMID: 32985413 DOI: 10.1088/1748-605x/ab9e46] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nowadays, scientists focus on the development of tissue-specific and personalized bio-ink that can be used in 3D bioprinting technologies. Platelet-rich plasma (PRP) is a person-specific source that is used as a therapeutic adjunct for the treatment of cartilage damage because it offers a cocktail of growth factors that are necessary for wound healing and tissue regeneration. However, PRP treatments in the clinic are not satisfactory and require upgrading, especially the point of maintaining bioactivity. In this study, we presented PRP as a photo-activated and photo-crosslinkable bio-ink in terms of tissue-specific structures for the first time. We achieved long-term and constant rate growth factor release and bioactivity protection of PRP with satisfactory mechanical characteristics. Photo-crosslinked PRP hydrogel was enabled by the addition of microwave-induced methacrylated gelatin (Gel-MA), which is connected to platelets in PRP via integrin receptors in its structure and chemically cross-linked upon UV irradiation (300-500 nm). Photo-activation of PRP was realized by a polychromatic light source in the near-infrared region (PAC, 600-1200 nm). Our results showed that Gel-MA/PRP hydrogels with the desired mechanical properties (low degradation rate and high mechanical strength) released growth factors at a constant rate for the long-term by the periodic PAC application. In vitro cell culture studies (viability, proliferation, morphology, histology, immunochemistry, biochemistry, gene expression analyses) proved that proliferation and differentiation of the ATDC5 cells increased in the periodically light-applied Gel-MA/PRP hydrogel without any external chemical agents.
Collapse
Affiliation(s)
- Gülseren Irmak
- Bioengineering Department, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | | |
Collapse
|
7
|
Irmak G, Demirtaş TT, Gümüşderelioğlu M. Sustained release of growth factors from photoactivated platelet rich plasma (PRP). Eur J Pharm Biopharm 2020; 148:67-76. [DOI: 10.1016/j.ejpb.2019.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/07/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
|
8
|
Calis M, Demirtas TT, Sert G, Irmak G, Gumusderelioglu M, Turkkani A, Çakar AN, Ozgur F. Photobiomodulation with polychromatic light increases zone 4 survival of transverse rectus abdominis musculocutaneous flap. Lasers Surg Med 2019; 51:538-549. [PMID: 30706950 DOI: 10.1002/lsm.23063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of relatively novel approach of application of polychromatic light waves on flap survival of experimental musculocutaneous flap model and to investigate efficacy of this modality as a delay procedure to increase vascularization of zone 4 of transverse rectus abdominis musculocutaneous (TRAM) flap. METHODS Twenty-one Wistar rats were randomized and divided into 3 experimental groups (n = 7 each). In group 1 (control group), after being raised, the TRAM flap was sutured back to its bed without any further intervention. In group 2 (delay group), photobiomodulation (PBM) was applied for 7 days as a delay procedure, before elevation of the flap. In group 3 (PBM group), the TRAM flap was elevated, and PBM was administered immediately after the flap was sutured back to its bed for therapeutic purpose. PBM was applied in 48 hours interval from 10 cm. distance to the whole abdominal wall both in groups 2 and 3 for one week. After 7 days of postoperative follow-up, as the demarcation of necrosis of the skin paddle was obvious, skin flap survival was further evaluated by macroscopic, histological and microangiographic analysis. RESULTS The mean percentage of skin flap necrosis was 56.17 ± 23.68 for group 1, 30.92 ± 17.46 for group 2 and 22.73 ± 12.98 for group 3 PBM receiving groups 2 and 3 revealed less necrosis when compared to control group and this difference was statistically significant. Vascularization in zone 4 of PBM applied groups 2 and 3 was higher compared to group 1 (P = 0.001). Acute inflammation in zone 4 of group 1 was significantly higher compared to groups 2 and 3 (P = 0.025). Similarly, evaluation of zone 1 of the flaps reveled more inflammation and less vascularization among the samples of the control group (P = 0.006 and P = 0.007, respectively). Comparison of PBM receiving two groups did not demonstrate further difference in means of vascularization and inflammation density (P = 0.259). CONCLUSION Application of PBM in polychromatic fashion enhances skin flap survival in experimental TRAM flap model both on preoperative basis as a delay procedure or as a therapeutic approach. Lasers Surg. 51:538-549, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mert Calis
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Gokhan Sert
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulseren Irmak
- Bioengineering Department, Hacettepe University, Ankara, Turkey
| | | | - Ayten Turkkani
- Department of Histology and Embryology, TOBB University, Ankara, Turkey
| | - Ayse Nur Çakar
- Department of Histology and Embryology, TOBB University, Ankara, Turkey
| | - Figen Ozgur
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|