1
|
Gonçalves RIDS, Neto JDAF, Pereira JDS, Nonaka CFW, Catão MHCDV. Photobiological response of mast cells to green and red light-emitting diodes (LEDs) in cutaneous burns. Photochem Photobiol 2025; 101:627-635. [PMID: 39319592 DOI: 10.1111/php.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
This study assessed the effects of red and green LEDs on mast cells (MCs) in third-degree burns in 75 Wistar rats, divided into control, red LED (RED), and green LED (GREEN) groups. Animals were irradiated daily with RED (630 nm, 300 mW, 0.779 W/cm2, 9 J/cm2, 30 s) and GREEN (520 nm, 180 mW, 0.467 W/cm2, 60 J/cm2, 30 s). Histological sections stained with toluidine blue were analyzed for total and subtype MCs. Standardized MC counting was performed across the viable lesion area, considering lesion margins, through intact connective tissue and the integrity of skin appendages. No statistically significant differences in MCs 2 (with released granules and intact cell border) were found between groups. Irradiated groups showed increased total MCs at 7, 14, and 21 days (p < 0.05), with a decrease in MCs 1 (intact MCs) at all time points compared to control (p < 0.05). Significant changes in MCs 3 (with massive degranulation and partial or complete disintegration of the cell border) degranulation were noted in RED at 7, 14, and 21 days (p < 0.009) and in GREEN at 14 (p < 0.009) and 32 days (p < 0.028). Results suggest red and green LEDs modulate MC recruitment and degranulation in third-degree burns.
Collapse
|
2
|
Pradal LDA, de Freitas E, Azevedo MRB, Costa R, Bertolini GRF. Photobiomodulation in Burn Wounds: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Photobiomodul Photomed Laser Surg 2025; 43:8-23. [PMID: 39172550 DOI: 10.1089/photob.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Objective: This systematic review and meta-analysis main goal was to evaluate the efficacy of photobiomodulation as burn wounds treatment. Methods: Systematic review of literature available in databases such as PubMed, Web of Science, Embase, Latin American and Caribbean Health Sciences Literature (LILACS), and The Cumulative Index to Nursing and Allied Health Literature (CINAHL) and gray literature in Google Scholar, Livivi, and Open Gray. SYRCLE's RoB tool was applied to determine methodological quality and risk of bias, and meta-analysis was performed using the software Review Manager. Results: Fifty-one studies, gathering more than three thousand animals were included in this systematic review, and four studies were selected to the meta-analysis due to their suitability. The results indicated that photobiomodulation was not effective to improve, statistical significantly, wound retraction (SMD = -0.22; 95% CI = -4.19, 3.75; p = 0.91; I2 = 92%) or collagen deposition (SMD = -0.02; 95% CI = -2.17, 2.13; p = 0.99; I2 = 78%). Conclusion: This meta-analysis suggests that photobiomodulation, applied in burn wounds, accordingly to the protocols presented by the selected studies, was not effective over analyzed outcomes. However, this conclusion could be further discussed and verified in more homogeneous animal models and human clinical trials.
Collapse
Affiliation(s)
- Lilian de Araujo Pradal
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | - Edicleia de Freitas
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | | - Rosemeire Costa
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | |
Collapse
|
3
|
Zhu B, Zhang G, Li W, Cao W, Zhang J, Wang H. Identification of Key Genes Related to Skin Burns Based on Bioinformatics Analysis. J Burn Care Res 2024; 45:1183-1191. [PMID: 36103997 PMCID: PMC11379151 DOI: 10.1093/jbcr/irac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 02/18/2024]
Abstract
To further understand the regulatory network and molecular mechanisms of gene expression after skin burns, we performed bioinformatics analysis of gene expression profiles of skin burn samples and identified key genes associated with skin burns. The GSE8056 and GSE139028 datasets were downloaded from the Gene Expression Omnibus database for analysis and validation. The limma package was used to screen for differentially expressed genes (DEGs). Gene ontology and pathway enrichment analyses (KEGG) were then performed. Subsequently, LASSO regression analysis was performed on DEGs and a regulatory network map of skin burn-related genes was constructed. Finally, the infiltration of immune cells was calculated and coexpression network maps of immune-related key genes and skin regeneration genes were constructed. Analysis of the GSE8056 dataset showed that 432 genes were upregulated and 351 genes were downregulated. The DEGs were mainly focused on immune response and skin regeneration. Meanwhile, these two groups of pivotal genes were significantly associated with abnormal infiltration of nine immune cells. GSE139028 validation revealed that three hub genes associated with skin burn immunity were differentially expressed, except for S100A8, while only the DPT gene was differentially expressed among the seven hub genes associated with skin regeneration. In short, the effect of skin burn on patients is to regulate the expression of immune-related genes UPP1, MMP1, MMP3, and skin regeneration-related gene DPT, which may be the key target for the treatment of skin burn.
Collapse
Affiliation(s)
- Boheng Zhu
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gaofei Zhang
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wuquan Li
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wende Cao
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinglin Zhang
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Wang
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Wu Y, Bei Y, Li W, Lu W, Zhu J, Zhang Z, Zhang T, Liu S, Chen K, Jin H, Li L, Li M, Gao J, Pan X. Advanced Multifunctional Hydrogels for Enhanced Wound Healing through Ultra-Fast Selenol-S NAr Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400898. [PMID: 38647422 DOI: 10.1002/advs.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.
Collapse
Affiliation(s)
- Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, 571199, China
| | - Wenjing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hong Jin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200010, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
5
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
6
|
de Alencar Fernandes Neto J, Simões TMS, de Oliveira TKB, Dos Santos Pereira J, Nonaka CFW, de Vasconcelos Catão MHC. Effects of photobiomodulation with blue Light Emitting Diode (LED) on the healing of skin burns. Lasers Med Sci 2023; 38:275. [PMID: 37993749 DOI: 10.1007/s10103-023-03929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
The management of skin burns is still challenging. Among the therapeutic methods used, there are topical treatments with pharmacological and herbal agents, low-intensity therapeutic ultrasound, use of biomaterials, reconstructive techniques and photobiomodulation therapy. The aim of this study was to evaluate the effects of photobiomodulation with blue Light Emitting Diode (LED) on burn healing. Fifty Wistar rats were divided into control (CTRL) (n = 25) and blue LED (LED) (n = 25), with subgroups (n = 5) for each time of euthanasia (7, 14, 21, 28 and 32 days). Treated animals were daily irradiated (470 nm, 1W, 0.44 W/cm2, 50 J/cm2). Clinical evaluations were performed and the Wound Retraction Index (WRI) was determined. Histological sections were submitted to hematoxylin-eosin, toluidine blue and the immunohistochemical technique, with anti-α-SMA and anti-TGF-β1 antibodies. All data were directly collected by previously calibrated evaluators in a blind manner. The values were included in a statistical program. For all statistical tests used, 5% significance level (p < 0.05) was considered. No statistically significant differences in WRI between groups were observed (p > 0.05). Re-epithelialization was higher using LED at 7 and 14 days (p < 0.05) and greater amount of inflammatory cells was observed at 7 days (p = 0.01). With LED at 21 and 32 days, greater number of mast cells were observed (p < 0.05), as well as smaller number of myofibroblasts at 14, 21, 28 and 32 days (p < 0.05) and lower percentage of TGF-β1 positive cells in the conjunctiva at 7, 14 and 21 days (p < 0.05). Negative correlations were observed in LED between the percentage of TGF-β1 in the epithelium and the mean number of inflammatory cells and number of myofibroblasts (p < 0.05). The results suggest that, depending on the period, blue LED can modulate the healing processes of third-degree skin burns, such as re-epithelialization, inflammatory response, mast cell concentration, myofibroblast differentiation and TGF-β1 immunoexpression. Despite these effects, this therapy does not seem to have significant influence on the retraction of these wounds. Future studies, using different protocols, should be carried out to expand the knowledge about the photobiomodulatory mechanisms of this type of light in the healing process.
Collapse
Affiliation(s)
- José de Alencar Fernandes Neto
- Graduate Program in Dentistry, State University of Paraiba, R. Baraúnas, 531, Bodocongó, Campina Grande, PB, 58429-500, Brazil
| | - Thamyres Maria Silva Simões
- Graduate Program in Dentistry, State University of Paraiba, R. Baraúnas, 531, Bodocongó, Campina Grande, PB, 58429-500, Brazil
| | - Tharcia Kiara Beserra de Oliveira
- Faculty of Medical Sciences, University Center UniFacisa, Av. Sen. Argemiro de Figueiredo, 1901, Itararé, Campina Grande, PB, 58411-020, Brazil
| | - Joabe Dos Santos Pereira
- Department of Pathology, Federal University of Rio Grande do Norte, R. General Gustavo Cordeiro de Faria, s/n, Petrópolis, Natal, RN, 59012-570, Brazil
| | - Cassiano Francisco Weege Nonaka
- Graduate Program in Dentistry, State University of Paraiba, R. Baraúnas, 531, Bodocongó, Campina Grande, PB, 58429-500, Brazil
| | | |
Collapse
|
7
|
Lu W, Lu K, Peng Y, Chen P, Bian W, Yu W. The efficacy of low-level laser therapy for the healing of second-degree burn wounds on lower limbs of glucocorticoid-dependent patients. Lasers Med Sci 2023; 38:186. [PMID: 37582898 DOI: 10.1007/s10103-023-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
This study was designed to investigate the effect of 630 ~ 650-nm red light on treating second-degree burns on lower limbs of glucocorticoid-dependent patients. Sixty-two glucocorticoid-dependent patients with the second-degree burns on lower limbs were divided into the control group (n = 25) and the observation group (n = 37) according to the treatment sequence and the patients' willingness. The patients in both groups were conventionally treated with 1% sulfadiazine silver cream dressing, with the only difference that the observation group received an additional 630-650-nm red light irradiation for 20 min before dressing. Each group was observed for 21 days, and observation ended if the wound healing was terminated. The wound healing rates, wound secretions, marginal response, and pain/itching levels were monitored and assessed. Compared with the control group, the observation group showed higher wound healing rate, fewer wound secretions, and more relief in marginal response. Clinical observation showed that 630-650-nm red light could effectively reduce wound purulent drainage/discharge, relieve the marginal response as well as pain, and promote wound healing.
Collapse
Affiliation(s)
- Wenting Lu
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China
| | - Kailan Lu
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China
| | - Yinbo Peng
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China
| | - Ping Chen
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China
| | - Weiwei Bian
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China.
| | - Weirong Yu
- Department Plastic and Reconstructive Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Baoshan District, Shanghai, 201999, China.
| |
Collapse
|
8
|
Busanello-Costa M, Renno ACM, de Goes Santos CP, Quintana HT, Martignago CCS, Tim CR, Assis L. Red LED light therapy associated with epidermal growth factor on wound repair process in rats. Lasers Med Sci 2023; 38:36. [PMID: 36626000 DOI: 10.1007/s10103-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Epidermal growth factor (EGF) and light-emitting diode (LED) are currently deployed as promissory treatments for skin repair; however, the mechanisms of their association are not yet evidenced. Thus, the present study aimed to evaluate the effects of combined treatment with EGF and red LED on the wound healing processes in rats. Adult Wistar rats were randomized in control group (CG) wounds without treatment; wounds submitted to EGF treatment (EGF); wounds submitted to LED treatment (LED); wounds submitted to EGF associated with LED treatments (EGF/LED). Treatments were performed immediately after the surgical procedure and each 24 h, totaling 8 sessions. Moreover, LED was applied before EGF treatment at a single point in the center of the wound. Morphological characteristics and the immunoexpression of COX-2, VEGF, and TGF-β were measured. The results demonstrated that EGF/LED group presented a higher wound healing index. Additionally, all experimental groups presented similar findings in the histological evaluation, the degree of inflammation, and the area of dermis-like tissue. However, for EGF-treated animals (with or without LED), neoepithelial length was higher. Furthermore, all the treated groups decreased COX-2 and increased VEGF immunoexpression, and only EGF/LED group enhanced the TGF-β protein expression when compared to the untreated group. This research shows that EGF and LED modulate inflammatory process and increase the vascularity. In addition, treatment of EGF associated with LED promoted a more evident positive effect for increasing TGF-β expression and may be promising resources in the clinical treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Márcia Busanello-Costa
- Department of Biosciences, Federal University of São Paulo, 136, Silva Jardim Street, Santos, SP, 11015-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo, 136, Silva Jardim Street, Santos, SP, 11015-020, Brazil
| | | | - Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of São Paulo, 136, Silva Jardim Street, Santos, SP, 11015-020, Brazil
| | - Cintia Cristina Santi Martignago
- Department of Biosciences, Federal University of São Paulo, 136, Silva Jardim Street, Santos, SP, 11015-020, Brazil
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Carla Roberta Tim
- Scientific Institute and Technological Department-University Brazil, São Paulo-Itaquera, SP, Brazil
| | - Lívia Assis
- Department of Biosciences, Federal University of São Paulo, 136, Silva Jardim Street, Santos, SP, 11015-020, Brazil.
- Scientific Institute and Technological Department-University Brazil, São Paulo-Itaquera, SP, Brazil.
| |
Collapse
|
9
|
Arranz-Paraíso D, Sola Y, Baeza-Moyano D, Benítez-Martínez M, Melero-Tur S, González-Lezcano RA. Mitochondria and light: An overview of the pathways triggered in skin and retina with incident infrared radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112614. [PMID: 36469983 DOI: 10.1016/j.jphotobiol.2022.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Slightly more than half of the solar radiation that passes through the atmosphere and reaches the Earth's surface is infrared. Over the past few years, many papers have been published on the possible positive effects of receiving this part of the electromagnetic spectrum. In this article we analyse the role of mitochondria in the supposed effects of infrared light based on the published literature. It is claimed that ATP synthesis is stimulated, which has a positive effect on the skin by increasing fibroblast proliferation, anchorage and production of collagen fibres, procollagen, and various cytokines responsible for the wound healing process, such as keratinocyte growth factor. Currently there are infrared light emitting equipment whose manufacturers and the centres where this service or treatment is offered claim that they are used for skin rejuvenation among other positive effects. Based on the literature review, it is necessary to deepen the scientific study of the mechanism of absorption of infrared radiation through the skin to better understand its possible positive effects, the risks of overexposure and to improve consumer health protection.
Collapse
Affiliation(s)
- Daniel Arranz-Paraíso
- Área de conocimiento de Tecnología Farmacéutica, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Yolanda Sola
- Group of Meteorology, Department of Applied Physics, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - David Baeza-Moyano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Marta Benítez-Martínez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Sofía Melero-Tur
- Departamento de arquitectura y diseño, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Roberto Alonso González-Lezcano
- Departamento de arquitectura y diseño, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| |
Collapse
|
10
|
Reis CHB, Buchaim DV, Ortiz ADC, Fideles SOM, Dias JA, Miglino MA, Teixeira DDB, Pereira EDSBM, da Cunha MR, Buchaim RL. Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers (Basel) 2022; 14:3150. [PMID: 35956667 PMCID: PMC9370794 DOI: 10.3390/polym14153150] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors "fibrin AND low-level laser therapy" and "fibrin AND photobiomodulation" were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
Collapse
Affiliation(s)
- Carlos Henrique Bertoni Reis
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil;
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Postgraduate Program in Law, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Maria Angelica Miglino
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
| | | | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| |
Collapse
|
11
|
do Amparo Manoel C, de Sousa Mariano S, da Silva Ramos E, Paolillo FR, de Aro AA, Mendes C, Venturini LM, Silveira PCL, Bagnato VS, de Andrade TAM. Photobiomodulation and photodynamic therapy applied after electrocauterization for skin healing optimization in rats. JOURNAL OF BIOPHOTONICS 2022; 15:e202100239. [PMID: 35092174 DOI: 10.1002/jbio.202100239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Photobiomodulation-PBM and Photodynamic Therapy-PDT have been used to induce healing. However, the effects of these therapies on skin-lesions induced by electrocautery are unknown, aiming at more favorable clinical and esthetic results. Electrocauterization was done in 78-female Wistar-rats using a system that includes an electrocautery and red-LED. The groups were: No injury, Injury, Injury + ALA (topical 5-aminolevulinic acid application), Injury + LED and Injury + ALA + LED (topical ALA application followed by photoactivation with LED). After 2nd, 7th and 14th days post-injury, immuno-histomorphometric analyses (inflammatory infiltrate, blood vessels, fibroblasts, eschar/epidermal thickness, IL-10 and VEGF) and biochemical assays of MPO (neutrophil), NAG (macrophage), nitrite, DCF (H2 O2 ), carbonyl (membrane's damage), sulfhydryl (membrane's integrity), SOD, GSH, hydroxyproline and re-epithelialization area were performed. The Injury + LED and Injury + ALA + LED groups controlled inflammation and oxidative stress, favoring angiogenesis, fibroblasts proliferation and collagen formation. Therefore, the PBM or PDT was effective in tissue formation with thinner eschar and epidermis, resulting in less scarring after electrocauterization.
Collapse
Affiliation(s)
- Cecília do Amparo Manoel
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Ericsson da Silva Ramos
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | | | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | | | | |
Collapse
|
12
|
Simões TMS, de Alencar Fernandes Neto J, Nonaka CFW, de Vasconcelos Catão MHC. Effects of photobiomodulation therapy with red LED on inflammatory cells during the healing of skin burns. Lasers Med Sci 2022; 37:2817-2822. [PMID: 35237887 DOI: 10.1007/s10103-022-03537-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effects of red light emitting diode (LED) photobiomodulation therapy protocol on inflammatory cells during the healing of third-degree skin burns. Fifty Wistar rats were randomly divided into control group (CTRL) (n = 25) and red group (RED) (n = 25), with subgroups (n = 5) for each time of euthanasia (7, 14, 21, 28, and 32 days). Treatment animals were daily irradiated (630 nm ± 10 nm, 300 mW, 9 J/cm2 per point, 30 s, continuous emission mode) at the 4 angles of the wound (total: 36 J/cm2). After specimen removal, histological sections were stained with hematoxylin and eosin for quantitative analysis of the inflammatory infiltrate (neutrophils and lymphocytes) under light microscopy. Greater number of inflammatory cells was observed in irradiated groups when compared to CTRL at 7, 14, 21, and 28 days, but with statistically significant difference only at 14 days (p = 0.02). At 32 days, higher inflammatory cell value was observed in CTRL when compared to RED, but with no statistically significant difference (p = 0.91). The results suggest that red LED, according to the protocol used, modulates the number of inflammatory cells in the early stages of the healing of third-degree skin burns. Nevertheless, this low-intensity light therapy may not, be efficient in reducing the number of neutrophils and lymphocytes in advanced stages of the repair process of skin burns. Further studies with other therapy protocols are needed to assess the effects of this type of light on the inflammatory response of skin burns.
Collapse
|
13
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Shin DW. Various biological effects of solar radiation on skin and their mechanisms: implications for phototherapy. Anim Cells Syst (Seoul) 2020; 24:181-188. [PMID: 33029294 PMCID: PMC7473273 DOI: 10.1080/19768354.2020.1808528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The skin protects our body from various external factors, such as chemical and physical stimuli, microorganisms, and sunlight. Sunlight is a representative environmental factor that considerably influences the physiological activity of our bodies. The molecular mechanisms and detrimental effects of ultraviolet rays (UVR) on skin have been thoroughly investigated. Chronic exposure to UVR generally causes skin damage and eventually induces wrinkle formation and reduced elasticity of the skin. Several studies have shown that infrared rays (IR) also lead to the breakdown of collagen fibers in the skin. However, several reports have demonstrated that the appropriate use of UVR or IR can have beneficial effects on skin-related diseases. Additionally, it has been revealed that visible light of different wavelengths has various biological effects on the skin. Interestingly, several recent studies have reported that photoreceptors are also expressed in the skin, similar to those in the eyes. Based on these data, I discuss the various physiological effects of sunlight on the skin and provide insights on the use of phototherapy, which uses a specific wavelength of sunlight as a non-invasive method, to improve skin-related disorders.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
15
|
Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol 2020; 96:1294-1313. [DOI: 10.1111/php.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Vitaly Plavskii
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Aliaksandr Mikulich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | | | - Tatsiana Ananich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ludmila Plavskaya
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Antonina Tretyakova
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ihar Leusenka
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| |
Collapse
|
16
|
Yadav A, Verma S, Keshri GK, Gupta A. Role of 904 nm superpulsed laser-mediated photobiomodulation on nitroxidative stress and redox homeostasis in burn wound healing. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:208-218. [PMID: 32027411 DOI: 10.1111/phpp.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Burn wound healing is delayed due to several critical factors such as sustained inflammation, vascular disorder, neuropathy, enhanced proteolysis, infection, and oxidative stress. Burn wounds have limited oxygen supply owing to compromised blood circulation. Hypoxic burn milieu leads to free radicals overproduction incurring oxidative injury, which impedes repair process causing damage to cell membranes, proteins, lipids, and DNA. Photobiomodulation (PBM) with 904 nm superpulsed laser had shown potent healing efficacy via attenuating inflammation while enhancing proliferation, angiogenesis, collagen accumulation, and bioenergetic activation in burn wounds. METHODS This study investigated the effects of 904 nm superpulsed laser at 0.4 mW/cm2 average power density, 0.2 J/cm2 total energy density, 100 Hz frequency, and 200 ns pulse width for 10 min daily for seven days postburn injury on nitroxidative stress, endogenous antioxidants status, and redox homeostasis. RESULTS Photobiomodulation treatment significantly decreased reactive oxygen species, nitric oxide, and lipid peroxidation levels as compared to non-irradiated control. Further, protective action of PBM against protein oxidative damage was evidenced by reduced protein carbonylation and advanced oxidation protein product levels along with significantly enhanced endogenous antioxidants levels of SOD, catalase, GPx, GST, reduced glutathione, and thiol (T-SH, Np-SH, P-SH). Biochemical changes aid in reduction of oxidative stress and maintenance of redox homeostasis, which further well corroborated by significantly up-regulated protein expression of Nrf 2, hemeoxygenase (HO-1), and thioredoxin reductase 2 (Txnrd2). CONCLUSION Photobiomodulation with 904 nm superpulsed laser led to reduction of nitroxidative stress, induction of endogenous antioxidants, and maintenance of redox homeostasis that could play a vital role in augmentation of burn wound healing.
Collapse
Affiliation(s)
- Anju Yadav
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Saurabh Verma
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| |
Collapse
|
17
|
Jeon Y, Choi HR, Kwon JH, Choi S, Nam KM, Park KC, Choi KC. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. LIGHT, SCIENCE & APPLICATIONS 2019; 8:114. [PMID: 31839934 PMCID: PMC6900403 DOI: 10.1038/s41377-019-0221-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 05/31/2023]
Abstract
Free-form optoelectronic devices can provide hyper-connectivity over space and time. However, most conformable optoelectronic devices can only be fabricated on flat polymeric materials using low-temperature processes, limiting their application and forms. This paper presents free-form optoelectronic devices that are not dependent on the shape or material. For medical applications, the transferable OLED (10 μm) is formed in a sandwich structure with an ultra-thin transferable barrier (4.8 μm). The results showed that the fabricated sandwich-structure transferable OLED (STOLED) exhibit the same high-efficiency performance on cylindrical-shaped materials and on materials such as textile and paper. Because the neutral axis is freely adjustable using the sandwich structure, the textile-based OLED achieved both folding reliability and washing reliability, as well as a long operating life (>150 h). When keratinocytes were irradiated with red STOLED light, cell proliferation and cell migration increased by 26 and 32%, respectively. In the skin equivalent model, the epidermis thickness was increased by 39%; additionally, in organ culture, not only was the skin area increased by 14%, but also, re-epithelialization was highly induced. Based on the results, the STOLED is expected to be applicable in various wearable and disposable photomedical devices.
Collapse
Affiliation(s)
- Yongmin Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Jeong Hyun Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seungyeop Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Kyung Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|