1
|
Zhao C, Qin G, Ling C, Zhao Y, Huang Y, Jiang Z, Zhou N, Liu J, Su D, Jiang J. MSNs-loaded HMME and Erastin-mediated ferroptosis combined with sonodynamic therapy for HCC treatment. J Cancer Res Ther 2025; 21:465-476. [PMID: 40317153 DOI: 10.4103/jcrt.jcrt_1531_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Ferroptosis can have a major impact on the development and advancement of hepatocellular carcinoma (HCC) due to its clear association with heightened vulnerability to the disease. This study aimed to develop a novel nanoplatform to evaluate its effectiveness in in vivo and in vitro models of HCC. METHODS Erastin, a compound that induces iron-dependent cell death, and HMME, a sonosensitizer, were enclosed within mesoporous silica nanoparticles (MSNs). The nanoparticles were engineered to exhibit a responsive assembly-disassembly mechanism. Hydrophilic hyaluronic acid (HA) was utilized for conjugation modification to synthesize Erastin/HMME@MSNs-HA. In vivo and in vitro experiments were conducted to elucidate the antitumor mechanisms of this nanomaterial. RESULTS In the in vitro cellular experiments, Erastin/HMME@MSNs-HA was rapidly degraded by hyaluronidase, leading to increased endocytosis of the cancer cells. Cellular breakdown led to the generation of harmful reactive oxygen species (ROS), decreased glutathione levels, and increased lipid peroxidation, resulting in a decrease in mitochondrial membrane potential, dysfunctional mitochondria, reduced cell growth, and increased cell death. Additionally, the Erastin/HMME@MSNs-HA nanotherapy platform, when combined with ultrasound (US) treatment, exhibited significant therapeutic effectiveness against tumors in vivo. It induced significant cell death in cancerous tissues, decreased tumor growth, worsened tissue oxygen deprivation, and exhibited good compatibility with the body. CONCLUSION These findings indicate that the nanoplatform can effectively alleviate tumor hypoxia while inducing apoptosis and ferroptosis, laying the foundation for enhancing the efficacy of ROS-mediated HCC therapy.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guchun Qin
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caixia Ling
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yang Zhao
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Zelong Jiang
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Niqiang Zhou
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Danke Su
- Department of Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinghang Jiang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2
|
Xu C, Xu Q, Yang H. H3K27 Acetylation-Activated GLDC Accelerated the Advancement of Oral Squamous Cell Carcinoma by Suppressing the p53 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2025; 40:140-151. [PMID: 39415627 DOI: 10.1002/tox.24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Glycine decarboxylase (GLDC) has been identified to be dysregulated and plays pivotal roles in various cancers. Besides, studies have suggested that GLDC expression is elevated in oral squamous cell carcinoma (OSCC) and associated with a worse prognosis, but the precise role and molecular mechanism of GLDC in OSCC remain unexplored. The current study first confirmed the high expression of GLDC in OSCC and its correlation with worse survival in patients with OSCC. By knocking down GLDC, it was discovered that the growth and colony formation of OSCC cells, as well as the development of xenograft tumors, were effectively suppressed. In addition, GLDC deficiency inhibited the migration and invasion of OSCC cells in vitro through regulating EMT markers and attenuated lung metastasis in vivo. Mechanistically, GLDC was found to affect the activity of the p53 signaling pathway. GLDC depletion retarded the progression of OSCC by activating the p53 signaling pathway. Moreover, p300 co-functioned with TFAP2A to induce acetylation of GLDC, which resulted in the upregulation of GLDC in OSCC. To conclude, acetylation-induced GLDC upregulation facilitated the tumorigenesis and metastasis of OSCC by its inhibition of the activity of the p53 signaling pathway.
Collapse
Affiliation(s)
- Chen Xu
- Department of Stomatology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, China
| | - Qingfeng Xu
- Department of Stomatology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, China
| | - Haibing Yang
- Department of Stomatology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Wu X, Jiang X, Liu Z, Xue P, Chen Y, Cao L, Wen Z, Tang Y. Effect of photodynamic therapy on peripheral immune system for unresectable cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 49:104279. [PMID: 39168069 DOI: 10.1016/j.pdpdt.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been emerging as a promising treatment for unresectable cholangiocarcinoma (CCA). A number of experiments have demonstrated that PDT could enhance antitumor immunity significantly. However, the impact of PDT on peripheral immune system for unresectable CCA remains unclear. METHODS In a clinical trial comparing the perioperative and long-term outcomes of PDT+stent treatment and stent alone treatment for unresectable CCA, we tested the levels of lymphocytes (CD4+ T cells, CD8+ T cells, NK cells, B cells and Treg cells) and immune-related cytokines (IL-4, IL-6, IL-10, TNF-α, TGF-β, perforin, GM-CSF and IFN-γ) in peripheral blood before and after PDT+stent treatment or stent alone treatment and analyzed the influence of PDT on peripheral immune system for unresectable CCA. RESULTS Before treatment, the levels of all the immune cells and immune-related cytokines did not show significant differences between the PDT+stent group and stent alone group. The ratio of CD8+ T cells increased significantly after PDT treatment, but other kinds of lymphocytes did not show significant difference. Increased level of IL-6 and decreased level of perforin and TGF-β after PDT treatment were demonstrated, whereas no significant changes were found for other immune-related cytokines. CONCLUSION PDT altered the levels of immune cells and immune-related cytokines in the peripheral blood of unresectable CCA patients, potentially correlating with the therapeutic efficacy of PDT in unresectable CCA treatment. Future studies could delve deeper into this aspect to explore how PDT can be more effectively utilized in the management of unresectable CCA.
Collapse
Affiliation(s)
- Xinqiang Wu
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yubin Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zilong Wen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yunqiang Tang
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China.
| |
Collapse
|
4
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Huang Y, Ouyang W, Lai Z, Qiu G, Bu Z, Zhu X, Wang Q, Yu Y, Liu J. Nanotechnology-enabled sonodynamic therapy against malignant tumors. NANOSCALE ADVANCES 2024; 6:1974-1991. [PMID: 38633037 PMCID: PMC11019498 DOI: 10.1039/d3na00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Sonodynamic therapy (SDT) is an emerging approach for malignant tumor treatment, offering high precision, deep tissue penetration, and minimal side effects. The rapid advancements in nanotechnology, particularly in cancer treatment, have enhanced the efficacy and targeting specificity of SDT. Combining sonodynamic therapy with nanotechnology offers a promising direction for future cancer treatments. In this review, we first systematically discussed the anti-tumor mechanism of SDT and then summarized the common nanotechnology-related sonosensitizers and their recent applications. Subsequently, nanotechnology-related therapies derived using the SDT mechanism were elaborated. Finally, the role of nanomaterials in SDT combined therapy was also introduced.
Collapse
Affiliation(s)
- Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
| | - Zijia Lai
- First Clinical Medical College, Guangdong Medical University 524000 Zhanjiang China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Zhaoting Bu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
- Faculty of Medicine, Macau University of Science and Technology Taipa Macao PR China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| |
Collapse
|
6
|
Domka W, Bartusik-Aebisher D, Mytych W, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers (Basel) 2024; 16:645. [PMID: 38339396 PMCID: PMC10854993 DOI: 10.3390/cancers16030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Wiktoria Mytych
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Pierfelice TV, Lazarevic M, Mitic D, Nikolic N, Radunovic M, Iezzi G, Piattelli A, Milasin J. Red Light and 5% Aminolaevulinic Acid (5%) Inhibit Proliferation and Migration of Dysplastic Oral Keratinocytes via ROS Production: An In Vitro Study. Gels 2023; 9:604. [PMID: 37623059 PMCID: PMC10453269 DOI: 10.3390/gels9080604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Undiagnosed and untreated oral precancerous lesions often progress into malignancies. Photodynamic therapy (PDT) might be a minimally invasive alternative to conventional treatments. 5-aminolevulinic acid (5-ALA) is one of the most commonly used photosensitizers in PDT, and it is effective on many cancer types. However, its hydrophilic characteristic limits cell membrane crossing. In the present study, the effect of a newly formulated gel containing 5% 5-ALA in combination with red light (ALAD-PDT) on a premalignant oral mucosa cell line was investigated. The dysplastic oral keratinocyte (DOK) cells were incubated with ALAD at different concentrations (0.1, 0.5, 1, and 2 mM) at two different times, 45 min or 4 h, and then irradiated for 7 min with a 630 nm LED (25 J/cm2). MTT assay, flow cytometry, wound healing assay, and quantitative PCR (qPCR) were performed. ALAD-PDT exerted inhibitory effects on the proliferation and migration of DOK cells by inducing ROS and necrosis. mRNA analysis showed modulation of apoptosis-related genes' expression (TP53, Bcl-2, survivin, caspase-3, and caspase-9). Furthermore, there was no difference between the shorter and longer incubation times. In conclusion, the inhibitory effect of the ALAD-PDT protocol observed in this study suggests that ALAD-PDT could be a promising novel treatment for oral precancerous lesions.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (T.V.P.); (G.I.)
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Milos Lazarevic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Dijana Mitic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (T.V.P.); (G.I.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| |
Collapse
|
8
|
Yang F, Xu M, Chen X, Luo Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomed Pharmacother 2023; 164:114933. [PMID: 37236030 DOI: 10.1016/j.biopha.2023.114933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are non-invasive treatment methods with obvious inhibitory effect on tumors and have few side effects, which have been widely concerned and explored by researchers. Sensitizer is the main factor in determining the therapeutic effect of PDT and SDT. Porphyrins, a group of organic compounds widespread in nature, can be activated by light or ultrasound and produce reactive oxygen species. Therefore, porphyrins as sensitizers in PDT have been widely explored and investigated for many years. Herein, we summarize the classical porphyrin compounds and their applications and mechanisms in PDT and SDT. The application of porphyrin in clinical diagnosis and imaging is also discussed. In conclusion, porphyrins have good application prospects in disease treatment as an important part of PDT or SDT, and in clinical diagnosis and imaging.
Collapse
Affiliation(s)
- Fuyu Yang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Meiqi Xu
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Xiaoyu Chen
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|