1
|
Blaj DA, Peptu CA, Danu M, Harabagiu V, Peptu C, Bujor A, Ochiuz L, Tuchiluș CG. Enrofloxacin Pharmaceutical Formulations through the Polymer-Free Electrospinning of β-Cyclodextrin-oligolactide Derivatives. Pharmaceutics 2024; 16:903. [PMID: 39065598 PMCID: PMC11279624 DOI: 10.3390/pharmaceutics16070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Enrofloxacin (ENR), a member of the fluoroquinolone class of antibiotics, is widely used in veterinary medicine to treat bacterial infections. Like many antibiotics, ENR has limited water solubility and low bioavailability. To address these challenges, drug formulations using solid dispersions, nanosuspensions, surfactants, cocrystal/salt formation, and inclusion complexes with cyclodextrins may be employed. The approach described herein proposes the development of ENR formulations by co-electrospinning ENR with custom-prepared cyclodextrin-oligolactide (CDLA) derivatives. This method benefits from the high solubility of these derivatives, enabling polymer-free electrospinning. The electrospinning parameters were optimized to incorporate significant amounts of ENR into the CDLA nanofibrous webs, reaching up to 15.6% by weight. The obtained formulations were characterized by FTIR and NMR spectroscopy methods and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study indicates that the presence of CDLA derivative does not inhibit the antibacterial activity of ENR, recommending these formulations for further development.
Collapse
Affiliation(s)
- Diana-Andreea Blaj
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Cătălina Anișoara Peptu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Maricel Danu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Alexandra Bujor
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lăcrămioara Ochiuz
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | |
Collapse
|
2
|
Mass Spectrometry of Esterified Cyclodextrins. Molecules 2023; 28:molecules28052001. [PMID: 36903247 PMCID: PMC10003902 DOI: 10.3390/molecules28052001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Cyclodextrins are cyclic oligosaccharides that have received special attention due to their cavity-based structural architecture that imbues them with outstanding properties, primarily related to their capacity to host various guest molecules, from low-molecular-mass compounds to polymers. Cyclodextrin derivatization has been always accompanied by the development of characterization methods, able to unfold complicated structures with increasing precision. One of the important leaps forward is represented by mass spectrometry techniques with soft ionization, mainly matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). In this context, esterified cyclodextrins (ECDs) benefited also from the formidable input of structural knowledge, thus allowing the understanding of the structural impact of reaction parameters on the obtained products, especially for the ring-opening oligomerization of cyclic esters. The current review envisages the common mass spectrometry approaches such as direct MALDI MS or ESI MS analysis, hyphenated liquid chromatography-mass spectrometry, and tandem mass spectrometry, employed for unraveling the structural features and particular processes associated with ECDs. Thus, the accurate description of complex architectures, advances in the gas phase fragmentation processes, assessment of secondary reactions, and reaction kinetics are discussed in addition to typical molecular mass measurements.
Collapse
|
3
|
Xu L, Zhou C, Wang F, Liu H, Dong G, Zhang S, Liu T. Functional drug carriers formed by RGD-modified β-CD-HPG for the delivery of docetaxel for targeted inhibition of nasopharyngeal carcinoma cells. RSC Adv 2022; 12:18004-18011. [PMID: 35765336 PMCID: PMC9204710 DOI: 10.1039/d2ra02301f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, a drug delivery system was prepared by grafting the targeting molecule arginine-glycine-aspartic acid (RGD) onto hyperbranched polyglycerol (HPG)-modified β-cyclodextrin (β-CD-HPG) for the targeted inhibition of nasopharyngeal carcinoma (NPC) cells. The obtained β-CD-HPG-RGD with a relatively small size and low surface charge delivered docetaxel (Doc) effectively and displayed a targeting effect to human NPC HNE-1 cells, as confirmed by confocal laser scanning microscopy and flow cytometry. The in vitro drug release analysis exhibited the controlled drug release kinetics of the β-CD-HPG-RGD/Doc nanomedicine. β-CD-HPG-RGD/Doc effectively inhibited the proliferation of HNE-1 cells and promoted apoptosis. Moreover, its biocompatibility in vitro and in vivo was assessed. The results indicate that the β-CD-HPG-RGD/Doc nanomedicine has potential application in NPC targeting therapy.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| | - Chuan Zhou
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Fan Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University Guangzhou 510632 China
| | - Huiqin Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Guangyuan Dong
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Tytgat L, Dobos A, Markovic M, Van Damme L, Van Hoorick J, Bray F, Thienpont H, Ottevaere H, Dubruel P, Ovsianikov A, Van Vlierberghe S. High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue Engineering Applications. Biomacromolecules 2020; 21:3997-4007. [PMID: 32841006 PMCID: PMC7556543 DOI: 10.1021/acs.biomac.0c00386] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Agnes Dobos
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Marica Markovic
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Lana Van Damme
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation
pour l’Analyse, la Synthèse et la Protéomique,
USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, 59650 France
| | - Hugo Thienpont
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Dubruel
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Aleksandr Ovsianikov
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Sandra Van Vlierberghe
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|