1
|
Lin F, Chen J, Qin T, Zhang L, Miao Y, Zhang Q, Liang G, Huang H. Fine Tuning of Hydrogen Bonding Interaction on Boosting the Room-Temperature Phosphorescence in Organic Host-Guest System. J Phys Chem Lett 2025; 16:1916-1923. [PMID: 39960230 DOI: 10.1021/acs.jpclett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Organic room-temperature phosphorescence (RTP) materials have demonstrated great potential applications in optoelectronics, anticounterfeiting, and biomedicine fields. Among them, the RTP properties of host-guest systems can be easily regulated by changing their component parameters, which has attracted widespread attention. However, the key factor of the hosts (crystalline or noncovalent interaction network) for boosting phosphorescence emission at room temperature was still unclear. Herein, a triphenyl phosphor in the estradiol system was heated to remove the crystal water and then cooled to turn it into a powder. This enabled the afterglow brightness to improve by more than 90-fold and the phosphorescent quantum yield by over 700-fold. Further studies have indicated that the hydrogen bonding interactions of estradiol's -OH group were tuned during these processes, from bonding with crystal water to bonding with guests and then constructing a strong network with the guests. The triplet excitons thus were effectively stabilized, which, coupled with the suitable T1 energy level of the host, could significantly enhance the phosphorescence in the amorphous estradiol system. This work demonstrates fine-tuning of the hydrogen bonding interactions inside the doped estradiol RTP system to boost its phosphorescence. It also substantiates that a noncovalent interaction network is more important than crystalline for efficient phosphorescence in a host-guest RTP system.
Collapse
Affiliation(s)
- Faxu Lin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jinzheng Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian Qin
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lina Zhang
- College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, PR China
| | - Yiling Miao
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qirui Zhang
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guodong Liang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Huahua Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
2
|
Lee B, Jablonska A, Pham D, Sagoo R, Gryczynski Z, Pham TT, Gryczynski I. Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films. Int J Mol Sci 2025; 26:514. [PMID: 39859229 PMCID: PMC11764979 DOI: 10.3390/ijms26020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.74), as determined relative to a quinine sulfate standard. In addition, we observed that HOE-doped PVA films exhibit room temperature phosphorescence (RTP) that remains visible for several seconds after UV excitation ceases. The slightly negative phosphorescence anisotropy implies that the triplet-singlet radiative transition is orthogonal to the singlet-singlet transition governing fluorescence. Notably, we observed that direct triplet-state excitation at longer wavelengths (beyond the primary absorption band) produces highly polarized RTP. We believe this possibility of direct triplet-state excitation opens new avenues for studying RTP in polymer-immobilized molecules.
Collapse
Affiliation(s)
- Bong Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.J.); (D.P.); (R.S.); (Z.G.)
| | | | | | | | | | | | - Ignacy Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.J.); (D.P.); (R.S.); (Z.G.)
| |
Collapse
|
3
|
Li Q, Huang X, Hou H, Guo F, Wang X, He M, Wang Y, Zhang Y, Qu L, Wang K, Li Y, Liang L, Yang C. Nondestructive Testing of Polymer Aging Based on Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69891-69900. [PMID: 39648763 DOI: 10.1021/acsami.4c16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Polymeric room-temperature phosphorescence (RTP) materials have attracted much attention due to their advantages of easy processing and excellent luminescent properties. However, it is still a challenge to obtain industrial production grade material through simple and green processing strategies. Herein, through the codoping strategy, different phosphors were embedded into nylon, a kind of polymer matrix, to obtain a series of highly efficient RTP materials without any organic solvents, for which the phosphorescence lifetime and brightness could reach 628.8 ms and 14 cd/m2, respectively. Besides, we found that the photophysical properties of these RTP materials varied greatly among different types of nylon matrix, owing to the divergence in the number of hydrogen bonding "sites". The superiority of the injection molding processing strategy enables the preparation of RTP materials to achieve desolvation, which could also be processed into any complex and desiring shape. Significantly, nylon can affect molecular chain changes due to aging and other problems, so that these RTP materials are considered as potential nondestructive testing for nylon product aging levels. This strategy also paves the way for the development of large-scale, eco-friendly, and practical application RTP materials and provides new ideas to industrialized preparation of long-lived RTP materials in the future.
Collapse
Affiliation(s)
- Qiankun Li
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Xia Huang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Hui Hou
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Fengling Guo
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Xiaojuan Wang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Meiyi He
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Yongkang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Yushuang Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| | - Liyan Liang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing 400054, P. R. China
| |
Collapse
|
4
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
5
|
Wu Q, Tian F, Chen W, Wang J, Lei B. Specific Recognition and Adsorption of Volatile Organic Compounds by Using MIL-125-Based Porous Fluorescence Probe Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2732. [PMID: 37836373 PMCID: PMC10574030 DOI: 10.3390/nano13192732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 10/15/2023]
Abstract
The severity of the volatile organic compounds (VOCs) issue calls for effective detection and management of VOC materials. Metal-organic frameworks (MOFs) are organic-inorganic hybrid crystals with promising prospects in luminescent sensing for VOC detection and identification. However, MOFs have limitations, including weak response signals and poor sensitivity towards VOCs, limiting their application to specific types of VOC gases. To address the issue of limited recognition and single luminosity for specific VOCs, we have introduced fluorescent guest molecules into MOFs as reference emission centers to enhance sensitivity. This composite material combines the gas adsorption ability of MOFs to effectively adsorb VOCs. We utilized (MIL-125/NH2-MIL-125) as the parent material for adsorbing fluorescent molecules and selected suitable solid fluorescent probes (FGFL-B1) through fluorescence enhancement using thioflavin T and MIL-125. FGFL-B1 exhibited a heightened fluorescence response to various VOCs through charge transfer between fluorescent guest molecules and ligands. The fluorescence enhancement effect of FGFL-B1 on tetrahydrofuran (THF) was particularly pronounced, accompanied by a color change from yellow to yellowish green in the presence of CCl4. FGFL-B1 demonstrated excellent adsorption properties for THF and CCl4, with saturated adsorption capacities of 655.4 mg g-1 and 811.2 mg g-1, respectively. Furthermore, FGFL-B1 displayed strong luminescence stability and reusability, making it an excellent sensing candidate. This study addresses the limitations of MOFs in VOC detection, opening avenues for industrial and environmental applications.
Collapse
Affiliation(s)
| | | | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| | - Jianying Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| |
Collapse
|
6
|
Liang Z, Wei M, Zhang S, Huang W, Shi N, Lv A, Ma H, He Z. Activating Molecular Room-Temperature Phosphorescence by Manipulating Excited-State Energy Levels in Poly(vinyl alcohol) Matrix. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37449496 DOI: 10.1021/acsami.3c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Poly(vinyl alcohol) (PVA) has been found as a wonderful matrix for chromophores to boost their room-temperature phosphorescence (RTP) character by forming abundant hydrogen bonding. Despite the well-utilized protective effect, the constructive role in accelerating the intersystem crossing is less investigated. Here, we focus on its role in manipulating the excited-state energy level to facilitate multiple intersystem crossing channels. Six benzoyl carbazole derivatives do not emit RTP in their solutions, powders, or crystals but exhibit significantly persistent RTP signals when embedded into the PVA matrix. Charge-transfer excited states were trapped by cofacial stacking in crystal, which blocks the intersystem crossing channels. In the PVA matrix, the allowed broad distribution of charge-transfer states covers the locally excited states, offering multiple intersystem crossing pathways via spin-vibronic orbit coupling. Consequently, efficient and persistent heavy-atom-free phosphors have been developed with the highest quantum yields of 7.7% and the longest lifetime of 2.3 s.
Collapse
Affiliation(s)
- Zhiwei Liang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Mengqing Wei
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Shuai Zhang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Wenbin Huang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Ning Shi
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zikai He
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Li JA, Zhang L, Wu C, Huang Z, Li S, Zhang H, Yang Q, Mao Z, Luo S, Liu C, Shi G, Xu B. Switchable and Highly Robust Ultralong Room-Temperature Phosphorescence from Polymer-Based Transparent Films with Three-Dimensional Covalent Networks for Erasable Light Printing. Angew Chem Int Ed Engl 2023; 62:e202217284. [PMID: 36512442 DOI: 10.1002/anie.202217284] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.
Collapse
Affiliation(s)
- Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Chunlei Wu
- Guangzhou Huifu Research Institute Co., Ltd., Guangzhou, 510663, China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Liang Y, Xu C, Zhang H, Wu S, Li JA, Yang Y, Mao Z, Luo S, Liu C, Shi G, Sun F, Chi Z, Xu B. Color-Tunable Dual-Mode Organic Afterglow from Classical Aggregation-Caused Quenching Compounds for White-Light-Manipulated Anti-Counterfeiting. Angew Chem Int Ed Engl 2023; 62:e202217616. [PMID: 36537720 DOI: 10.1002/anie.202217616] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10-6 wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260-340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.
Collapse
Affiliation(s)
- Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Chao Xu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shiying Wu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yifan Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Wu H, Shi YZ, Wang K, Yu J, Zhang XH. Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Phys Chem Chem Phys 2023; 25:2729-2741. [PMID: 36633179 DOI: 10.1039/d2cp05119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thermally activated delayed fluorescence (TADF) materials have received enormous attention and the mechanism behind them has been investigated in depth. It has been found that some donor-acceptor (D-A) type TADF emitters could obviously exhibit dual stable conformations in the ground states and their distributions significantly affect the physical properties and device performances. Therefore, professional analysis and a summary of the relationship between molecular structures and performances are very important. In this review, we first summarize the mechanism and properties of TADF emitters with conformational isomerism. We also classify their recent progress according to their different applications, and provide an outlook on their perspectives.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
10
|
Zheng X, Han Q, Lin Q, Li C, Jiang J, Guo Q, Ye X, Yuan WZ, Liu Y, Tao X. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. MATERIALS HORIZONS 2023; 10:197-208. [PMID: 36331106 DOI: 10.1039/d2mh00998f] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.
Collapse
Affiliation(s)
- Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
11
|
Clustering-triggered phosphorescence of nonconventional luminophores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Song J, Wang Y, Qu L, Fang L, Zhou X, Xu ZX, Yang C, Wu P, Xiang H. Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. J Phys Chem Lett 2022; 13:5838-5844. [PMID: 35727022 DOI: 10.1021/acs.jpclett.2c01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultralong room-temperature phosphorescence (RTP) is greatly important in a series of applications, but obtaining RTP from metal-free organic materials is still an enormous challenge due to the spin-forbidden nature of triplet excitons. Because of its electron-rich nature and easy derivatization, carbazole (Cz) is widely used to build organic RTP and thermally activated delayed fluorescence (TADF) materials. However, Liu et al. (Nat. Mater. 2021, 20, 175) recently demonstrated that the RTP of Cz is induced by charge traps of its isomeric impurity in commercial sources. Here, on the basis of the classical El-Sayed rule and the recently discovered intersystem crossing promotion principles (twisted structure and charge transfer), we designed and prepared highly pure (>99.9%) (R/S)-octahydro-binaphthyl-based bicarbazoles (BiCz) for high-performance RTP (ΦP = 23%; τp = 1.09 s). Interestingly, BiCz exhibited photoactivated TADF and RTP in isolated and aggregated states, respectively, and thus would be an efficient tool for rejuvenating Cz-based RTP.
Collapse
Affiliation(s)
- Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Yanying Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Lizhi Fang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu 610041, China
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Yang Y, Liang Y, Zheng Y, Li JA, Wu S, Zhang H, Huang T, Luo S, Liu C, Shi G, Sun F, Chi Z, Xu B. Efficient and Color-Tunable Dual-Mode Afterglow from Large-Area and Flexible Polymer-Based Transparent Films for Anti-Counterfeiting and Information Encryption. Angew Chem Int Ed Engl 2022; 61:e202201820. [PMID: 35315193 DOI: 10.1002/anie.202201820] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/13/2022]
Abstract
It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Yifan Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yitao Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shiying Wu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Tepeng Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Liu Z, Tian Y, Yang J, Li A, Wang Y, Ren J, Fang M, Tang BZ, Li Z. Direct demonstration of triplet excimer in purely organic room temperature phosphorescence through rational molecular design. LIGHT, SCIENCE & APPLICATIONS 2022; 11:142. [PMID: 35581178 PMCID: PMC9114335 DOI: 10.1038/s41377-022-00826-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Organic luminogens with room temperature phosphorescence (RTP) have been paid great attention and developed rapidly for their wide application values. Until now, the internal mechanism and source of phosphorescence are still obscure, especially for the relationship between molecular dimer and RTP emission. Hence, we designed and synthesized eight phenothiazine 5,5-dioxide derivatives to directly reveal how the monomer and dimer in packing affect the RTP behavior. Dimers with strong π-π stacking (θ < 20.66°; d < 3.86 Å) lead to pure triplet excimer emission, while those with weak π-π stacking (27.02°< θ < 40.64°; 3.84 Å < d < 4.41 Å) contribute to dual RTP emissions of both monomer and triplet excimer. The valuable information of this work would promote the further development of this research field, as well as others in aggregate.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
| | - Aisen Li
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yunsheng Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jia Ren
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Yang Y, Liang Y, Zheng Y, Li J, Wu S, Zhang H, Huang T, Luo S, Liu C, Shi G, Sun F, Chi Z, Xu B. Efficient and Color‐Tunable Dual‐Mode Afterglow from Large‐Area and Flexible Polymer‐Based Transparent Films for Anti‐Counterfeiting and Information Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yifan Yang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Yaohui Liang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Yitao Zheng
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Jian‐An Li
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Shiying Wu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Huaqing Zhang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Tepeng Huang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Suilian Luo
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Cong Liu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Guang Shi
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Fengqiang Sun
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Zhenguo Chi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Bingjia Xu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| |
Collapse
|
16
|
Chanmungkalakul S, Wang C, Miao R, Chi W, Tan D, Qiao Q, Ang ECX, Tan CH, Fang Y, Xu Z, Liu X. A Descriptor for Accurate Predictions of Host Molecules Enabling Ultralong Room-Temperature Phosphorescence in Guest Emitters. Angew Chem Int Ed Engl 2022; 61:e202200546. [PMID: 35107202 DOI: 10.1002/anie.202200546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Although doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %. The yielded pairs exhibited bright yellow and green RTP with the quantum efficiency up to 0.4 and lifetime up to 1.67 s, respectively. Using these RTP pairs, we successfully achieved multi-layer message encryption. The ΔE descriptor could provide an efficient way for developing doping-induced RTP materials.
Collapse
Affiliation(s)
- Supphachok Chanmungkalakul
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Esther Cai Xia Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Choon-Hong Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
17
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Chen Y, Xie Y, Li Z. Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. J Phys Chem Lett 2022; 13:1652-1659. [PMID: 35147440 DOI: 10.1021/acs.jpclett.2c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pure organic room-temperature phosphorescence (RTP) has attracted wide interest due to its unique advantages and promising applications. However, it is still challenging to develop efficient RTP through precise molecular design. In this work, RTP is observed from two simple aromatic acids, nicotinic acid (NA) and isonicotinic acid (INA), in the crystal state. Single crystal structure analysis indicates that an intense hydrogen bond between the pyridine nitrogen atom and the carboxyl group results in zigzag and linear molecular packing modes in NA and INA crystal. From theoretical calculations, the hydrogen bond can effectively promote the intersystem crossing process and stabilize triplet exciton. The identical molecular orientations in the molecular array contribute to the larger dipole moment of INA as compared to that of NA, which should be responsible for the red-shifted photoluminescence and RTP of INA. When the hydrogen bond is destructed by grinding or deprotonation, the RTP decreases sharply, further confirming the crucial role of the hydrogen bond on RTP.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Chanmungkalakul S, Wang C, Miao R, Chi W, Tan D, Qiao Q, Ang ECX, Tan C, Fang Y, Xu Z, Liu X. A Descriptor for Accurate Predictions of Host Molecules Enabling Ultralong Room‐Temperature Phosphorescence in Guest Emitters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Supphachok Chanmungkalakul
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloids Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijie Chi
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Esther Cai Xia Ang
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloids Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
20
|
Wu W, Liu B. Modulating the optical properties and functions of organic molecules through polymerization. MATERIALS HORIZONS 2022; 9:99-111. [PMID: 34498024 DOI: 10.1039/d1mh01030a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic functional materials with advanced optical properties have attracted much attention due to their broad applications, such as in light-emitting diodes, solar cells, anti-counterfeiting, photocatalysis, and even disease diagnosis and treatment. Recent research has revealed that many optical properties of organic molecules can be improved through simple polymerization. In this review, we discuss the phenomenon, mechanism, and impact of polymerization on the properties of materials, including the polymerization-induced spectral shift, polymerization-enhanced photosensitization, polymerization-enhanced two-photon absorption, polymerization-enhanced photocatalytic efficiency, polymerization-induced room temperature phosphorescence, polymerization-induced thermally activated delayed fluorescence, and polymerization-induced emission using specific examples with different applications. The new opportunities arising from polymerization in designing high performance optical materials are summarized in the future perspective.
Collapse
Affiliation(s)
- Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
21
|
Fan Y, Han M, Huang A, Liao Q, Tu J, Liu X, Huang B, Li Q, Li Z. Multi-photoresponsive triphenylethylene derivatives with photochromism, photodeformation and room temperature phosphorescence. MATERIALS HORIZONS 2022; 9:368-375. [PMID: 34533547 DOI: 10.1039/d1mh01207j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of triphenylethylene derivatives exhibited multi-photoresponsive properties, including photochromism, photodeformation and room temperature phosphorescence (RTP), which are strongly related to molecular conformations and packing in the aggregated states. Accordingly, these properties can be subtly adjusted by substituents to the center double bond and/or peripheral phenyl moieties. The introduction of bromine atom was beneficial to photochromism and photodeformation properties as a result of the additional C-H⋯Br interactions and electron-withdrawing property. Also, it can promote the RTP effect via heavy atom effect, resulting in persistent afterglow lasting up to 150 min as detected by chemiluminescent imaging system.
Collapse
Affiliation(s)
- Yunhao Fan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Mengmeng Han
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Arui Huang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jin Tu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Xiuxing Liu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Bohan Huang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Xu T, Wu P, Lou L, Li Y, Wang D, Cao H, He W, Yang Z. Vitrimer enhanced carbazole-based organic room-temperature phosphorescent materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj04546f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for obtaining RTP materials by adding potential phosphorescent molecules to a reprocessable epoxy cross-linked network.
Collapse
Affiliation(s)
- Tianqi Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingyun Lou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Liu J, Chen Z, Hu J, Sun H, Liu Y, Liu Z, Li J. Time-resolved color-changing long-afterglow for security systems based on metal–organic hybrids. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01435h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Himpc-based phosphors exhibit diverse afterglow performances by modulating molecular aggregation dispositions for anti-counterfeiting application.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Ziang Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Jia Hu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Hongxia Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Yan Liu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, P. R. China
| |
Collapse
|
24
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
25
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
26
|
Zhang L, Ding D. Recent advances of transition Ir(III) complexes as photosensitizers for improved photodynamic therapy. VIEW 2021. [DOI: 10.1002/viw.20200179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Liping Zhang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin P. R. China
- Shenzhen Key Laboratory of Neurosurgery Shenzhen Second People's Hospital Shenzhen P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin P. R. China
| |
Collapse
|
27
|
Yang Y, Yang J, Fang M, Li Z. Recent Process of Photo-responsive Materials with Aggregation-induced Emission. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1034-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Ren J, Wang Y, Tian Y, Liu Z, Xiao X, Yang J, Fang M, Li Z. Force-Induced Turn-On Persistent Room-Temperature Phosphorescence in Purely Organic Luminogen. Angew Chem Int Ed Engl 2021; 60:12335-12340. [PMID: 33719198 DOI: 10.1002/anie.202101994] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Research of purely organic room-temperature phosphorescence (RTP) materials has been a hot topic, especially for those with stimulus response character. Herein, an abnormal stimulus-responsive RTP effect is reported, in which, purely organic luminogen of Czs-ph-3F shows turn-on persistent phosphorescence under grinding. Careful analyses of experimental results, coupled with the theoretical calculations, show that the transition of molecular conformation from quasi-axial to quasi-equatorial of the phenothiazine group should be mainly responsible for this exciting result. Furthermore, the applications of stylus printing and thermal printing are both successfully realized, based on the unique RTP effect of Czs-ph-3F.
Collapse
Affiliation(s)
- Jia Ren
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yunsheng Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiangheng Xiao
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Liao Q, Li Q, Li Z. Substituent Effects in Organic Luminogens with Room Temperature Phosphorescence. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| |
Collapse
|
30
|
Ren J, Wang Y, Tian Y, Liu Z, Xiao X, Yang J, Fang M, Li Z. Force‐Induced Turn‐On Persistent Room‐Temperature Phosphorescence in Purely Organic Luminogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jia Ren
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Yunsheng Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Yu Tian
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Xiangheng Xiao
- School of Physics and Technology Wuhan University Wuhan Hubei 430072 China
| | - Jie Yang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Manman Fang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Department of Chemistry Wuhan University Wuhan Hubei 430072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| |
Collapse
|
31
|
Kanakubo M, Yamamoto Y, Kubo Y. Room-Temperature Phosphorescence of Thiophene Boronate Ester-Cross Linked Polyvinyl Alcohol; A Triplet-to-Singlet FRET-Induced Multi-Color Afterglow Luminescence with Sulforhodamine B. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
32
|
Ding B, Gao H, Wang C, Ma X. Reversible room-temperature phosphorescence in response to light stimulation based on a photochromic copolymer. Chem Commun (Camb) 2021; 57:3154-3157. [PMID: 33634819 DOI: 10.1039/d1cc00613d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the field of intelligent luminescence materials, it is a great challenge to regulate organic room-temperature phosphorescence by light irradiation. Herein, benzothiadiazole was modified with viologen derivatives and copolymerized to achieve amorphous RTP emission. The photo-stimulated color change in both emission and absorption has a good reversibility after cycles of light irradiation.
Collapse
Affiliation(s)
- Bingbing Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | |
Collapse
|
33
|
Nidhankar AD, Goudappagouda, Wakchaure VC, Babu SS. Efficient metal-free organic room temperature phosphors. Chem Sci 2021; 12:4216-4236. [PMID: 34163691 PMCID: PMC8179585 DOI: 10.1039/d1sc00446h] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
An innovative transformation of organic luminescent materials in recent years has realised the exciting research area of ultralong room-temperature phosphorescence. Here the credit for the advancements goes to the rational design of new organic phosphors. The continuous effort in the area has yielded wide varieties of metal-free organic systems capable of extending the lifetime to several seconds under ambient conditions with high quantum yield and attractive afterglow properties. The various strategies adopted in the past decade to manipulate the fate of triplet excitons suggest a bright future for this class of materials. To analyze the underlying processes in detail, we have chosen high performing organic triplet emitters that utilized the best possible ways to achieve a lifetime above one second along with impressive quantum yield and afterglow properties. Such a case study describing different classes of metal-free organic phosphors and strategies adopted for the efficient management of triplet excitons will stimulate the development of better candidates for futuristic applications. This Perspective discusses the phosphorescence features of single- and multi-component crystalline assemblies, host-guest assemblies, polymers, and polymer-based systems under various classes of molecules. The various applications of the organic phosphors, along with future perspectives, are also highlighted.
Collapse
Affiliation(s)
- Aakash D Nidhankar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Goudappagouda
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vivek C Wakchaure
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
34
|
Wang J, Lou X, Wang Y, Tang J, Yang Y. Recent Advances of Polymer‐Based Pure Organic Room Temperature Phosphorescent Materials. Macromol Rapid Commun 2021; 42:e2100021. [DOI: 10.1002/marc.202100021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Wang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xin‐Yue Lou
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yan Wang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jun Tang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- College of Chemistry Jilin University Changchun 130012 P. R. China
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| |
Collapse
|
35
|
Liu X, Yang L, Li X, Zhao L, Wang S, Lu Z, Ding J, Wang L. An Electroactive Pure Organic Room‐Temperature Phosphorescence Polymer Based on a Donor‐Oxygen‐Acceptor Geometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinrui Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zheng‐Hong Lu
- Department of Materials Science and Engineering University of Toronto Toronto Ontario Canada
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
36
|
The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9907-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Wang J, Li Z. Significant Influence of Molecular Packing in Aggregates on Optoelectronic Properties. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Liu X, Yang L, Li X, Zhao L, Wang S, Lu Z, Ding J, Wang L. An Electroactive Pure Organic Room‐Temperature Phosphorescence Polymer Based on a Donor‐Oxygen‐Acceptor Geometry. Angew Chem Int Ed Engl 2020; 60:2455-2463. [DOI: 10.1002/anie.202011957] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Xinrui Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zheng‐Hong Lu
- Department of Materials Science and Engineering University of Toronto Toronto Ontario Canada
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
39
|
Dou X, Zhu T, Wang Z, Sun W, Lai Y, Sui K, Tan Y, Zhang Y, Yuan WZ. Color-Tunable, Excitation-Dependent, and Time-Dependent Afterglows from Pure Organic Amorphous Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004768. [PMID: 33089564 DOI: 10.1002/adma.202004768] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Achieving persistent room-temperature phosphorescence (p-RTP), particularly those of tunable full-colors, from pure organic amorphous polymers is attractive but challenging. Particularly, those with tunable multicolor p-RTP in response to excitation wavelength and time are highly important but both fundamentally and technically underexplored. Here, a facile and general strategy toward color-tunable p-RTP from blue to orange-red based on amidation grafting of luminophores onto sodium alginate (SA) chains, resulting in amorphous polymers with distinct p-RTP and even impressively excitation-dependent and time-dependent afterglows is reported. p-RTP is associated with the unique semi-rigidified SA chains, effective hydrogen bonding network, and oxygen barrier properties of SA, whereas excitation-dependent and time-dependent afterglows should stem from the formation of diversified p-RTP emissive species with comparable but different lifetimes. These results outline a rational strategy toward amorphous smart luminophores with colorful, excitation-dependent, and time-dependent p-RTP, excellent solution processability, and film-forming ability for versatile applications.
Collapse
Affiliation(s)
- Xueyu Dou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueying Lai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| |
Collapse
|
40
|
Liu F, Liao Q, Wang J, Gong Y, Dang Q, Ling W, Han M, Li Q, Li Z. Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9814-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Che W, Xie Y, Li Z. Structural Design of Blue‐to‐Red Thermally‐Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weilong Che
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
| | - Yujun Xie
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
| | - Zhen Li
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
42
|
Alam P, Leung NLC, Liu J, Cheung TS, Zhang X, He Z, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Chan CCS, Wong KS, Peng Q, Tang BZ. Two Are Better Than One: A Design Principle for Ultralong-Persistent Luminescence of Pure Organics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001026. [PMID: 32323364 DOI: 10.1002/adma.202001026] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/05/2023]
Abstract
Because of their innate ability to store and then release energy, long-persistent luminescence (LPL) materials have garnered strong research interest in a wide range of multidisciplinary fields, such as biomedical sciences, theranostics, and photonic devices. Although many inorganic LPL systems with afterglow durations of up to hours and days have been reported, organic systems have had difficulties reaching similar timescales. In this work, a design principle based on the successes of inorganic systems to produce an organic LPL (OLPL) system through the use of a strong organic electron trap is proposed. The resulting system generates detectable afterglow for up to 7 h, significantly longer than any other reported OLPL system. The design strategy demonstrates an easy methodology to develop organic long-persistent phosphors, opening the door to new OLPL materials.
Collapse
Affiliation(s)
- Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Nelson L C Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Tsz Shing Cheung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xuepeng Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zikai He
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Christopher C S Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
43
|
Tao S, Zhu S, Feng T, Zheng C, Yang B. Crosslink‐Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Songyuan Tao
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Changchun 130012 P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First Hospital of Jilin University Changchun 130061 P. R. China
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Changchun 130012 P. R. China
| |
Collapse
|
44
|
Crosslink‐Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angew Chem Int Ed Engl 2020; 59:9826-9840. [DOI: 10.1002/anie.201916591] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/14/2023]
|
45
|
Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. 9,9‐Dimethylxanthene Derivatives with Room‐Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiuyan Liao
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Qihe Gao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Education, and College of Life SciencesNankai University Tianjin 300071 China
| | - Jiaqiang Wang
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Yanbing Gong
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Qian Peng
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yu Tian
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 China
| | - Yuanyuan Fan
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Haojie Guo
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Education, and College of Life SciencesNankai University Tianjin 300071 China
| | - Qianqian Li
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Zhen Li
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 China
| |
Collapse
|
46
|
Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. 9,9-Dimethylxanthene Derivatives with Room-Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angew Chem Int Ed Engl 2020; 59:9946-9951. [PMID: 31944514 DOI: 10.1002/anie.201916057] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 01/13/2023]
Abstract
Room-temperature phosphorescence (RTP) emitters with ultralong lifetimes are emerging as attractive targets because of their potential applications in bioimaging, security, and other areas. But their development is limited by ambiguous mechanisms and poor understanding of the correlation of the molecular structure and RTP properties. Herein, different substituents on the 9,9-dimethylxanthene core (XCO) result in compounds with RTP lifetimes ranging from 52 to 601 ms, which are tunable by intermolecular interactions and molecular configurations. XCO-PiCl shows the most persistent RTP because of its reduced steric bulk and multiple sites of the 1-chloro-2-methylpropan-2-yl (PiCl) moiety for forming intermolecular interactions in the aggregated state. The substituent effects reported provide an efficient molecular design of organic RTP materials and establishes relationships among molecular structures, intermolecular interactions, and RTP properties.
Collapse
Affiliation(s)
- Qiuyan Liao
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qihe Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaqiang Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yanbing Gong
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Fan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Haojie Guo
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qianqian Li
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
47
|
Che W, Gong Y, Tu L, Han M, Li X, Xie Y, Li Z. Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Phys Chem Chem Phys 2020; 22:21445-21452. [DOI: 10.1039/d0cp02881a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The RTP property of polymorphisms present the different emission derive from the same molecule embed in different intermolecular packings.
Collapse
Affiliation(s)
- Weilong Che
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Yanbin Gong
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Mengmeng Han
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
- Department of Chemistry
| |
Collapse
|
48
|
Wang Y, Yang J, Tian Y, Fang M, Liao Q, Wang L, Hu W, Tang BZ, Li Z. Persistent organic room temperature phosphorescence: what is the role of molecular dimers? Chem Sci 2019; 11:833-838. [PMID: 34123059 PMCID: PMC8146318 DOI: 10.1039/c9sc04632a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Molecular dimers have been frequently found to play an important role in room temperature phosphorescence (RTP), but its inherent working mechanism has remained unclear. Herein a series of unique characteristics, including singlet excimer emission and thermally activated delayed fluorescence, were successfully integrated into a new RTP luminogen of CS-2COOCH3 to clearly reveal the excited-state process of RTP and the special role of molecular dimers in persistent RTP emission. The first purely organic room temperature phosphorescence (RTP) luminogen, with singlet excimer emission and thermally activated delayed fluorescence (TADF) effect, was successfully developed. ![]()
Collapse
Affiliation(s)
- Yunsheng Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Jie Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Yu Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Manman Fang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Qiuyan Liao
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Ben Zhong Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China .,Department of Chemistry, The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong
| | - Zhen Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China .,Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University Wuhan 430072 China .,Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
49
|
Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Huang A, Lin P, Li C, Li Q, Li Z. Mechanoluminescence or Room‐Temperature Phosphorescence: Molecular Packing‐Dependent Emission Response. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911648] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinfeng Wang
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Zhaofei Chai
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Jiaqiang Wang
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Can Wang
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Mengmeng Han
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Qiuyan Liao
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Arui Huang
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Peixuan Lin
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Conggang Li
- China State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and MathematicsThe Chinese Academy of Sciences Wuhan 430071 China
| | - Qianqian Li
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
| | - Zhen Li
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 China
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 China
| |
Collapse
|
50
|
Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Huang A, Lin P, Li C, Li Q, Li Z. Mechanoluminescence or Room-Temperature Phosphorescence: Molecular Packing-Dependent Emission Response. Angew Chem Int Ed Engl 2019; 58:17297-17302. [PMID: 31529755 DOI: 10.1002/anie.201911648] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Mechanoluminescence (ML) and room-temperature photophosphorescence (RTP) were achieved in polymorphisms of a triphenylamine derivative with ortho-substitution. This molecular packing-dependent emission afforded crucial information to deeply understand the intrinsic mechanism of different emission forms and the possible packing-function relationship. With the incorporation of solid-state 13 C NMR spectra of single crystals, as well as the analysis of crystal structures, the preferred packing modes for ML and/or RTP were investigated in detail, which can guide the reasonable design of organic molecules with special light-emission properties.
Collapse
Affiliation(s)
- Jinfeng Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhaofei Chai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Jiaqiang Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Can Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Mengmeng Han
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qiuyan Liao
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Arui Huang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Peixuan Lin
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Conggang Li
- China State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianqian Li
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|