1
|
Li Z, Xiang Y, Li J, Feng L, Zhang M, Zhang Z, Yan S, Xu B. Solution-processing induced H-aggregate of Perylene-Diimide Zwitterion Exhibiting Compact Molecular Stacking toward Efficient Cathode Modification in Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202413986. [PMID: 39305140 DOI: 10.1002/anie.202413986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 11/01/2024]
Abstract
High-performance organic cathode interlayers (CILs) play a crucial role in the advance of organic solar cells (OSCs). However, organic CILs have exhibited inferior performances to their inorganic counterparts over a long time, due to the inherent shortcoming of poor charge transporting capability. Here, we designed and synthesized a perylene-diimide (PDI) zwitterion PDI-B as high-performance organic CIL for OSCs. We revealed that an obvious H-aggregate of PDI-B was formed during the solution processing, thereby significantly enhancing the charge transporting capability of the CIL. Compared to the classic PDINN, the π-π stacking distance of PDI-B was reduced from 4.2 Å to 3.9 Å, which further facilitated the charge transport. Consequently, PDI-B showed a high conductivity of 1.81×10-3S/m; this is comparable to that of inorganic CILs. The binary OSC showed an elevated PCE of 19.23 %, which is among the highest PCE values for binary OSCs. Benefitting from improved solvent resistance and good compatibility with large-area processing method of PDI-B, the photovoltaic performances of inverted and 1-cm2 OSC were significantly improved. The results from this work provide a new approach of optimizing the condensed structure of PDI film to boost the charge conductivity, opening an avenue to develop high-performance PDI-based CILs.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiayu Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Luxin Feng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Rothermund MA, Koehler SJ, Vaissier Welborn V. Electric Fields in Polymeric Systems. Chem Rev 2024; 124:13331-13369. [PMID: 39586114 PMCID: PMC11638910 DOI: 10.1021/acs.chemrev.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Polymer-based electronic devices are limited by slow transport and recombination of newly separated charges. Built-in electric fields, which arise from compositional gradients, are known to improve charge separation, directional charge transport, and to reduce recombination. Yet, the optimization of these fields through the rational design of polymeric materials is not prevalent. Indeed, polymers are disordered and generate nonuniform electric fields that are hard to measure, and therefore, hard to optimize. Here, we review work focusing on the intentional optimization of electric fields in polymeric systems with applications to catalysis, energy conversion, and storage. This includes chemical tuning of constituent monomers, linkers, morphology, etc. that result in stronger molecular dipoles, polarizability or crystallinity. We also review techniques to characterize electric fields in polymers and emerging processing strategies based on electric fields. These studies demonstrate the benefits of optimizing electric fields in polymers. However, rational design is often restricted to the molecular scale, deriving new pendants on, or linkers between, monomers. This does not always translate in strong electric fields at the polymer level, because they strongly depend on the monomer orientation. A better control of the morphology and monomer-to-polymer scaling relationship is therefore crucial to enhance electric fields in polymeric materials.
Collapse
Affiliation(s)
- Mark A. Rothermund
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules
Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen J. Koehler
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules
Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules
Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Yang N, Zhang T, Wang S, An C, Seibt S, Wang G, Wang J, Yang Y, Wang W, Xiao Y, Yao H, Zhang S, Ma W, Hou J. An Ortho-Bisalkyloxylated Benzene-Based Fully Non-fused Electron Acceptor for Efficient Organic Photovoltaic Cells. SMALL METHODS 2024; 8:e2300036. [PMID: 37092533 DOI: 10.1002/smtd.202300036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
To develop the low-cost nonfullerene acceptors (NFAs), two fully non-fused NFAs (TBT-2 and TBT-6) with ortho-bis((2-ethylhexyl)oxy)benzene unit and different side chains onto thiophene-bridges are synthesized through highly efficient synthetic procedures. Both acceptors show good planarity, low optical gaps (≈1.51 eV), and deep highest occupied molecular orbital levels (≤-5.77 eV). More importantly, the single-crystal structure of TBT-2 shows compact molecular arrangement due to the existence of intramolecular interactions between adjacent aromatic units and strong π-π stacking between intermolecular terminal groups. When the two acceptors are fabricated organic photovoltaic (OPV) cells by combining with a wide optical gap polymer donor, the TBT-6 with strong crystallization forms large domain sizes in bulk heterojunction (BHJ) blend. As a result, the TBT-6-based OPV cell shows a low power conversion efficiency (PCE) of 9.53%. In contrast, the TBT-2 with proper crystallization facilitates morphological optimization in the BHJ blend. Consequently, the TBT-2-based OPV cell gives an outstanding PCE of 13.25%, which is one of the best values among OPV cells with similar optical gaps. Overall, this work provides a practical molecular design strategy for developing high-performance and low-cost electron acceptors.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Susanne Seibt
- Australian Synchrotron, ANSTO, Clayton, Victoria, 3168, Australia
| | - Guanlin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wang H, Liu S, Yang Y, Li H, Wei Z, Cheng Y, Hou J, Xu B. Reducing the Depletion Region Width at the Anode Interface via a Highly Doped Conjugated Polyelectrolyte Composite for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3744-3754. [PMID: 38224058 DOI: 10.1021/acsami.3c15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In the realm of organic solar cells (OSCs), the width of the depletion region at the anode interface is a critical factor that adversely impacts the open-circuit voltage (Voc) and the power conversion efficiency (PCE). To address this challenge, a novel approach involving a conjugated polyelectrolyte (CPE)-based composite, PCP-2F-Li:POM, has been developed. This composite serves as a solution-processed hole transport layer (HTL), effectively minimizing the depletion region width in high-performance OSCs. The innovative aspect of PCP-2F-Li:POM lies in its "mutual doping" mechanism. Polyoxometalate (POM) is utilized as a dopant, facilitating the formation of p-doped CPE and n-doped POM within the composite. This results in a substantial increase in doping density, nearly 2 orders of magnitude higher than that observed in unmodified CPE. Consequently, the width of depletion region is markedly reduced, shrinking from 76.4 to 6.0 nm. This reduction plays a pivotal role in enhancing hole transport via the tunneling effect. The practical impact of this development is notable. It leads to an increase in Voc from 0.84 to 0.86 V, thereby contributing significantly to an impressive PCE of 18.04% in OSCs. Moreover, the compatibility of PCP-2F-Li:POM with large-area processing techniques underscores its potential as a viable HTL material for future practical applications. Additionally, its contribution to the enhanced long-term stability of OSCs further bolsters its suitability for practical applications.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhengrong Wei
- School of Physics, Hubei University, Wuhan 430072, P. R. China
| | - Yuan Cheng
- School of Physics, Hubei University, Wuhan 430072, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Song L, Qiao X, Sun J, Yi N, Wang M, Zhao Z, Xie R, Chen W, Xia Y. Wet-spinning fluorescent alginate fibres achieved by doping PEI modified CPDs for multiple anti-counterfeiting. Carbohydr Polym 2023; 304:120500. [PMID: 36641167 DOI: 10.1016/j.carbpol.2022.120500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Carbonized polymer dots (CPDs) with satisfactory excitation-dependent-emission and biocompatibility had great potential in anti-counterfeiting fibres field. However, it was difficult for CPDs to combined into the fibres due to the unstable interaction between CPDs and spinnable polymer matrix. Polyethyleneimine (PEI) was used to modify CPDs (namely PEI-CPDs) for achieving stable interactions with sodium alginate (SA) by a simple method, which including the physical interaction between the amino groups of PEI-CPDs and carboxyl groups of SA and the chain entanglement between two types of polymer chains. Then alginate fibres based on PEI-CPDs (PEI-CPDs/CaALG fibres) were successfully prepared by wet-spinning for the first time with less loss of PEI-CPDs. The high mechanical strength, excellent thermal stability and good biocompatibility achieved by PEI-CPDs/CaALG fibres. Furthermore, the fibres exhibited the excitation-dependent-emission property. Anti-counterfeiting of the fibres was conducted on both textile and papers, which showed higher security than the existing anti-counterfeiting fibres.
Collapse
Affiliation(s)
- Li Song
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Xiaolan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianxin Sun
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Na Yi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China.
| | - Ruyi Xie
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Khalid M, Khan M, Mahmood K, Arshad M, Imran M, Braga AAC, Hussain R. Theoretical designing of non-fullerene derived organic heterocyclic compounds with enhanced nonlinear optical amplitude: a DFT based prediction. Sci Rep 2022; 12:20220. [DOI: 10.1038/s41598-022-21894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractIn current era, non-fullerene (NF) chromophores have been reported as significant NLO materials due to promising optoelectronic properties. Therefore, a series of NF based chromophores abbreviated as TPBD2-TPBD6 with D–π–A architecture was designed from the reference compound (TPBR1) by its structural tailoring with an efficient donor and various acceptor groups for the first time. First, the structures of said compounds were optimized at M06-2X/6-311G (d,p) level. Further, the optimized structures were utilized to execute frontier molecular orbitals (FMOs), UV–Visible (UV–Vis) absorption, density of states (DOS) and transition density matrix (TDM) analyses at the same level to understand the non-linear (NLO) response of TPBR1 and TPBD2-TPBD6. Promising NLO results were achieved for all derivatives i.e., the highest amplitude of linear polarizability ⟨α⟩, first (βtotal) and second ($$\gamma$$
γ
total) hyperpolarizabilities than their parent molecule. The compound TPBD3 was noted with the most significant NLO properties as compared to the standard molecule. The structural modeling approach by utilizing the acceptor molecules has played a prominent role in attaining favorable NLO responses in the molecules. Thus, our study has tempted the experimentalists to synthesize the proposed NLO materials for the modern optoelectronic high-tech applications.
Collapse
|