Wang J, Sun Y, Liu X, Kang Y, Cao W, Ye J, Gao C. An antibacterial and anti-oxidant hydrogel containing hyperbranched poly-l-lysine and tea polyphenols accelerates healing of infected wound.
BIOMATERIALS ADVANCES 2024;
157:213755. [PMID:
38171171 DOI:
10.1016/j.bioadv.2023.213755]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Both bacteria-infection and excessive inflammation delay the wound healing process and even create non-healing wound, thus it is highly desirable to endow the wound dressing with bactericidal and anti-oxidation properties. Herein an antibacterial and antioxidation hydrogel based on Carbomer 940 (CBM) and hydroxypropyl methyl cellulose (HPMC) loaded with tea polyphenols (TP) and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The hydrogel killed 99.9 % of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) at 107 CFU mL-1, and showed strong antioxidation against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) radicals without noticeable cytotoxicity in vitro. The CBM/HPMC/HBPL/TP hydrogel significantly shortened the inflammatory period of the MRSA-infected full-thickness skin wound of rats in vivo, with 2 orders of lower MRSA colonies compared with the blank control, and promoted the wound closure especially at the earlier stage. The inflammation was suppressed and the vascularization was promoted significantly as well, resulting in reduced pro-inflammatory factors including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and increased anti-inflammatory factors such as interleukin-4 (IL-4) and interleukin-10 (IL-10).
Collapse