1
|
Cao Y, Gu J, Chen Z, Gao J, Yang J, Wu W, Fang M, Li Q, Liu B, Li Z. HClO-Activated Near-Infrared Chemiluminescent Probes with a Malononitrile Group for In-Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408941. [PMID: 39713927 DOI: 10.1002/adma.202408941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Chemiluminescence (CL) imaging has emerged as a powerful approach to molecular imaging that allows exceptional sensitivity with virtually no background interference because of its unique capacity to emit photons without an external excitation source. Despite its high potential, the application of this nascent technique faces challenges because the current chemiluminescent agents have limited reactive sites, require complex synthesis, are insufficiently bright, and lack near-infrared emission. Herein, a series of HClO-activated chemiluminescent probes that exhibit robust near-infrared emission are studied. Specifically engineered to respond to HClO, a known biomarker of acute inflammation, these probes achieve high-contrast in vivo imaging by eliminating the need for constant external excitation. Comprehensive experimental and theoretical investigations demonstrate that the CL of the probes depends on the reactivity of the vinylene bonds, following a concerted decomposition of the oxidized chemiluminescent molecule. The application of these chemiluminescent nanoparticles in vivo facilitates high-contrast imaging of acute inflammation, providing real-time, high-contrast visualization of inflammatory conditions. This advancement signifies a leap forward for chemiluminescent nanoplatforms in biomedical imaging and expands the available methodologies in this field.
Collapse
Affiliation(s)
- Yalei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhijian Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jucai Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Meng Y, Liu W, Liu Z, Gao M, Fang M, Yang J, Ma D, Li Z. Pure room temperature phosphorescence emission in nondoped OLEDs: adjustable oxidation states and excited-state modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60658-60665. [PMID: 39445675 DOI: 10.1021/acsami.4c13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Purely organic room temperature phosphorescence (RTP) materials are a new kind of triplet emitter, which can harvest both singlet and triplet excitons in theory, thus showing great application potential for organic light-emitting diodes (OLEDs). However, nondoped OLEDs based on RTP emitters have been rarely explored owing to challenges in realizing efficient phosphorescence in single-component systems. Herein, three donor-acceptor-type luminogens were designed and synthesized in which phenothiazine, with different oxidation degrees, acted as the electron donor and acetophenone as the acceptor. The adjustable oxidation states of phenothiazine enabled the modulation of excited states, facilitating the transition from dual RTP and thermally activated delayed fluorescence emissions to pure RTP. A nondoped OLED device was then fabricated based on the pure RTP emitter, achieving a high exciton utilization efficiency of 86%, clearly demonstrating the enhancement of electroluminescence performance through RTP properties.
Collapse
Affiliation(s)
- Yunshu Meng
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wei Liu
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Dongge Ma
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
3
|
Li X, Tu L, Gao M, Li A, Chen Y, Chi W, Zhang D, Duan L, Xie Y, Tang BZ, Li Z. Highly Efficient Blue Organic Light Emitting Diodes Based on Cyclohexane-Fused Quinoxaline Acceptor. J Phys Chem Lett 2023; 14:6982-6989. [PMID: 37523259 DOI: 10.1021/acs.jpclett.3c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exploring blue organic light emitting diodes (OLED) is an important but challenging issue. Herein, to achieve blue-shifted emission, cyclohexane is fused to quinoxaline to weaken the electron-withdrawing ability and conjugation degree of the acceptor. As a result, blue to cyan fluorescent emitters of Me-DPA-TTPZ, tBu-DPA-TTPZ, and TPA-TTPZ were designed and synthesized with donors of diphenylamine and triphenylamine, which exhibit high photoluminescence quantum yields and good thermal stability. In OLEDs with emitters of TPA-TTPZ, the sensitized and nonsensitized devices demonstrate deep-blue (449 nm) and blue (468 nm) emission with maximum external quantum efficiency and CIE coordinates of 6.1%, (0.15, 0.10) and 5.1%, (0.17, 0.22), respectively, validating their potential as blue emitters in OLEDs.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Wu Z, Wang J, Zhao L, Li C, Lu Y. A novel donor-acceptor structured diketopyrrolopyrrole-based conjugated polymer synthesized by direct arylation polycondensation (DArP) for highly efficient antimicrobial photothermal therapy. Biomater Sci 2023; 11:2151-2157. [PMID: 36729407 DOI: 10.1039/d2bm02024f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel donor (D)-acceptor (A) structured conjugated polymer (PDPP-TP), which contains two alternating D-A pairs, namely thiophene (T)-diketopyrrolopyrrole (DPP) and thiophenen (T)-thieno[3,4-b]pyrazine (TP) along the main chain of the polymer, was synthesized by direct arylation polycondensation (DArP) for a highly efficient photothermal antibacterial treatment. The hydrophilic PDPP-TP-based nanoparticles (PTNPs) with a hydration diameter of about 120 nm were obtained by self-assembly using DSPE-mPEG2000 as the polymer matrix. PTNPs show strong near-infrared (NIR) absorbance with a λmax at 910 nm (ε = 2.25 × 104 L mol-1 cm-1) and NIR light-triggered photoactivity with a high photothermal conversion efficiency (PTCE) of 52.8% under 880 nm laser irradiation. Keeping the merits of excellent biocompatibility and photostability, PTNPs exhibited remarkable bacterial inhibition efficiency of almost 100% against Gram-negative E. coli and Gram-positive S. aureus with the help of an 880 nm laser (0.7 W cm-2, 6 min), demonstrating its great potential as photothermal materials with a broad spectrum of activity for the effective treatment of microbial infections.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
5
|
Sigl M, Rath T, Schlemmer B, Fürk P, Trimmel G. Synthesis of a fluorene and quinoxaline-based co-polymer for organic electronics. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractQuinoxaline has recently gained interest as monomer in conjugated copolymers because of its easy synthetic accessibility and successful use in highly efficient organic solar cells. In this contribution, we introduce a quinoxaline–fluorene-co-polymer, PFQ10, synthesized by copolymerization of 5,8-dibromo-6,7-difluoro-2-[(2-hexyldecyl)oxy]quinoxaline and 9,9-dioctyl-9H-9-fluorene-2,7-bis(boronic acid pinacol ester) using the Suzuki–Miyaura reaction. By optimization of the reaction conditions, polymers with molecular weights up to 17.2 kDa and a low dispersity of 1.3 were obtained. PFQ10 showed blue photoluminescence with an emission maximum at 459 nm and a relative fluorescence quantum yield of 0.37. As proof of principle, PFQ10 was employed in organic light-emitting diodes and showed a blue–green electroluminescence.
Graphical abstract
Collapse
|
6
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Li XY, Zong LS, Wang YB, Cao Q, Wang JY, Jian XG. Construction of Aniline Trimer Based Conjugated Polymers through Schiff Base Reaction and Their Use as Feedstock for Infrared Stealth Coatings. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Liu J, Chen L, Wang X, Yang Q, Zhao L, Tong C, Wang S, Shao S, Wang L. Multiple Resonance Dendrimers Containing Boron, Oxygen, Nitrogen-Doped Polycyclic Aromatic Emitters for Narrowband Blue-Emitting Solution-Processed OLEDs. Macromol Rapid Commun 2022; 43:e2200079. [PMID: 35267224 DOI: 10.1002/marc.202200079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Indexed: 11/07/2022]
Abstract
Different from small-molecule multiple resonance emitters processed via vacuum evaporation technology, we present the design of multiple resonance dendrimers by introducing the first- and second-generation carbazole dendrons in periphery of boron, oxygen, nitrogen-doped polycyclic aromatic skeleton, for efficient narrowband blue electroluminescence by solution process. The multiple resonance dendrimers not only keep the narrowband emission of polycyclic aromatic skeleton, but also can suppress their intermolecular aggregation by steric carbazole dendrons, overcoming the unwanted spectral broadening in solid state. The resultant first-generation carbazole dendrimer exhibits narrowband blue emission with promising photoluminescenct quantum efficiency of 94% and delayed fluorescence with lifetime of 139.1 μs in solid-state film. Solution-processed organic light-emitting diodes based on the dendrimers reveal electroluminescence at 488 nm with full-width at half maximum of 39 nm, maximum luminous efficiency of 29.2 cd A-1 and maximum external quantum efficiency of 13.4%. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiapeng Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Cuiyan Tong
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|