1
|
Yin G, Wu J, Qi C, Zhou X, Yu ZZ, Zhang HB. Pickering Emulsion-Driven MXene/Silk Fibroin Hydrogels with Programmable Functional Networks for EMI Shielding and Solar Evaporation. NANO-MICRO LETTERS 2025; 17:312. [PMID: 40551046 PMCID: PMC12185816 DOI: 10.1007/s40820-025-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/25/2025] [Indexed: 06/28/2025]
Abstract
Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields. However, the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize. We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures. Significantly, the amphipathy of silk fibroin (SF) and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant. The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities. As a proof-of-concept, the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency (~ 64 dB). Also, the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties. The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process, expecting far superior evaporation performance (~ 3.5 kg m⁻2 h⁻1) and salt tolerance capability compared to other hydrogel evaporators. Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties.
Collapse
Affiliation(s)
- Guang Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Chengzhang Qi
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xinfeng Zhou
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Qi CZ, Min P, Zhou X, Jin M, Sun X, Wu J, Liu Y, Zhang HB, Yu ZZ. Multifunctional Asymmetric Bilayer Aerogels for Highly Efficient Electromagnetic Interference Shielding with Ultrahigh Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2025; 17:291. [PMID: 40504423 PMCID: PMC12162446 DOI: 10.1007/s40820-025-01800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/13/2025] [Indexed: 06/16/2025]
Abstract
Although multifunctional electromagnetic interference (EMI) shielding materials with ultrahigh electromagnetic wave absorption are highly required to solve increasingly serious electromagnetic radiation and pollution and meet multi-scenario applications, EMI shielding materials usually cause a lot of reflection and have a single function. To realize the broadband absorption-dominated EMI shielding via absorption-reflection-reabsorption mechanisms and the interference cancelation effect, multifunctional asymmetric bilayer aerogels are designed by sequential printing of a MXene-graphene oxide (MG) layer with a MG emulsion ink and a conductive MXene layer with a MXene ink and subsequent freeze-drying for generating and solidifying numerous pores in the aerogels. The top MG layer of the asymmetric bilayer aerogel optimizes impedance matching and achieves re-absorption, while the bottom MXene layer enhances the reflection of the incident electromagnetic waves. As a result, the asymmetric bilayer aerogel achieves an average absorption coefficient of 0.95 in the X-band and shows the tunable absorption ability to electromagnetic wave in the ultrawide band from 8.2 to 40 GHz. Finite element simulations substantiate the effectiveness of the asymmetric bilayer aerogel for electromagnetic wave absorption. The multifunctional bilayer aerogels exhibit hydrophobicity, thermal insulation and Joule heating capacities and are efficient in solar-thermal/electric heating, infrared stealth, and clean-up of spilled oil.
Collapse
Affiliation(s)
- Cheng-Zhang Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xinfeng Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Meng Jin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xia Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jianjun Wu
- Ningxiamogong Technology Co., Ltd, Yongning, 750100, People's Republic of China
| | - Yanjun Liu
- Ningxiamogong Technology Co., Ltd, Yongning, 750100, People's Republic of China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Zhong-Zhen Yu
- Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Zhao H, Wang J, He M, Li S, Guo H, Kan D, Qiu H, Chen L, Gu J. Electromagnetic Interference Shielding Films: Structure Design and Prospects. SMALL METHODS 2025; 9:e2401324. [PMID: 39385653 DOI: 10.1002/smtd.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Indexed: 10/12/2024]
Abstract
The popularity of portable and wearable flexible electronic devices, coupled with the rapid advancements in military field, requires electromagnetic interference (EMI) shielding materials with lightweight, thin, and flexible characteristics, which are incomparable for traditional EMI shielding materials. The film materials can fulfill the above requirements, making them among the most promising EMI shielding materials for next-generation electronic devices. Meticulously controlling structure of composite film materials while optimizing the electromagnetic parameters of the constructed components can effectively dissipate and transform electromagnetic wave energy. Herein, the review systematically outlines high-performance EMI shielding composite films through structural design strategies, including homogeneous structure, layered structure, and porous structure. The attenuation mechanism of EMI shielding materials and the evaluation (Schelkunoff theory and calculation theory) of EMI shielding performance are introduced in detail. Moreover, the effect of structure attributes and electromagnetic properties of composite films on the EMI shielding performance is analyzed, while summarizing design criteria and elucidating the relevant EMI shielding mechanism. Finally, the future challenges and potential application prospects of EMI shielding composite films are prospected. This review provides crucial guidance for the construction of advanced EMI shielding films tailored for highly customized and personalized electronic devices in the future.
Collapse
Affiliation(s)
- Hui Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Jingfeng Wang
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shuai Li
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Dongxiao Kan
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lixin Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
4
|
Lian Y, Lan D, Jiang X, Wang L, Yan S, Dong Q, Jiang Y, Gu J, Gao Z, Wu G. Multifunctional electromagnetic wave absorbing carbon fiber/Ti 3C 2T X MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J Colloid Interface Sci 2024; 676:217-226. [PMID: 39024822 DOI: 10.1016/j.jcis.2024.07.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Developing multifunctional materials which could simultaneously possess anti-bacterial ability and electromagnetic (EM) absorption ability during medical care is quite essential since the EM waves radiation and antibiotic-resistant bacteria are threatening people's health. In this work, the multifunctional carbon fiber/Ti3C2Tx MXene (CM) were synthesized through repeated dip-coating and following in-situ growth method. The as-fabricated CF/MXene displayed outstanding EM wave absorption and highly efficient photothermal converting ability. The minimum reflection loss (RL) of -57.07 dB and ultra-broad absorption of 7.74 GHz could be achieved for CM composites. By growth of CoNi-layered double hydroxides (LDHs) sheets onto MXene, the absorption bandwidth for carbon fiber/Ti3C2Tx MXene layered double hydroxides (CML) could be reach 5.44 GHz, which could cover the whole Ku band. The excellent photothermal effect endow the CM composites with excellent antibacterial performance. The antibacterials tests indicated that nearly 100 % bactericidal efficiency against E. acoil and S. aureus was obtained for the CM composite after exposure to near-infrared region (NIR) irradiation. This work provides a promising candidate to combat medical device-related infections and EM pollution.
Collapse
Affiliation(s)
- Yuanyuan Lian
- Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Xiaodan Jiang
- Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lin Wang
- Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shu Yan
- Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qingzhe Dong
- Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Jiang
- Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Junwei Gu
- Shananxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenguo Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhou Y, Zhang Y, Ruan K, Guo H, He M, Qiu H, Gu J. MXene-based fibers: Preparation, applications, and prospects. Sci Bull (Beijing) 2024; 69:2776-2792. [PMID: 39098564 DOI: 10.1016/j.scib.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
With the vigorous development and huge demand for portable wearable devices, wearable electronics based on functional fibers continue to emerge in a wide range of energy storage, motion monitoring, disease prevention, electromagnetic interference (EMI) shielding, etc. MXene, as an emerging two-dimensional inorganic compound, has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties, high electrical conductivity, excellent electrochemical properties and favorable processability. Herein, this paper reviews recent advances of MXene-based fibers. Speaking to MXene dispersions, the properties of MXene dispersions including dispersion stability, rheological properties and liquid crystalline properties are highlighted. The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors, sensors, EMI shielding and Joule heaters are summarized. Challenges and prospects surrounding the development of MXene-based fibers are proposed in future. This review aims to provide processing guidelines for MXene-based fiber manufacturing, thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Zhou X, Min P, Liu Y, Jin M, Yu ZZ, Zhang HB. Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 2024; 385:1205-1210. [PMID: 39265019 DOI: 10.1126/science.adp6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.
Collapse
Affiliation(s)
- Xinfeng Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Jin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Chen K, Wang H, Shi Y, Liu M, Feng Y, Fu L, Song P. Realizing balanced flame retardancy and electromagnetic interference shielding in hierarchical elastomer nanocomposites. J Colloid Interface Sci 2024; 653:634-642. [PMID: 37738936 DOI: 10.1016/j.jcis.2023.09.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The combination of electromagnetic interference (EMI) shielding performance and flame-retardant property is essential for applications in the field of electronics and electrics. To date, there have been few successful cases in achieving such portfolios, due to the different mechanisms and even mutual exclusivity of these two attributes. Herein, an ammonium polyphosphate@chitosan@carbon nanotube (APP@CS@MWCNT) core-multishell hybrid was synthesized by microencapsulation technology. Then, the hybrid was introduced into TPU matrix to fabricate TPU composites, acting as surface layer. Meanwhile, MXene film was used as intermediate layer to construct hierarchical TPU composites. The obtained results showed that after introduction of 1 wt% APP@CS@MWCNT hybrid, the peak of heat release rate (PHRR) and the peak of smoke produce rate (PSPR) of TPU composites decreased by 67.4% and 35.6%, respectively, compared with those of pure TPU. Owing to multiple reflection losses, interface polarization losses, and charge carrier movement-induced thermal dissipation, TPU/15AC@4M-SW exhibited the highest EMI shielding performance, and obtained shielding effectiveness values of 35.7 dB and 38.9 dB in X band and K band, respectively.
Collapse
Affiliation(s)
- Kexin Chen
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Hengrui Wang
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China.
| | - Miao Liu
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Libi Fu
- College of Civil Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD 4300, Australia.
| |
Collapse
|
8
|
Shi Y, Nie C, Jiang S, Wang H, Feng Y, Gao J, Tang L, Song P. Tunable construction of fire safe and mechanically strong hierarchical composites towards electromagnetic interference shielding. J Colloid Interface Sci 2023; 652:1554-1567. [PMID: 37660612 DOI: 10.1016/j.jcis.2023.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Cotton fabric composites were designed to be protected by fire safe thermoplastic polyurethane (TPU) composites for developing electromagnetic interference (EMI) shielding polymer composites with superior mechanical properties. Herein, the as-prepared MXene was coated onto the fiber surface of cotton and then thermally compressed with TPU composites, which were filled with the sodium dodecyl sulfate modified layered double hydroxides functionalized the short carbon fiber hybrids through melt blending method. Then, a series of highly fire safe cotton/TPU hierarchical composites were constructed by a designed thermal compression technique. For instance, the obtained cotton/TPU hierarchical sample showed greatly reduced peak of heat release rate, peak of carbon monoxide production rate and peak of carbon dioxide production rate of TPU by 50.1%, 52.1% and 55.4%, respectively. Furthermore, the cotton/TPU hierarchical composites possessed the EMI shielding effectiveness of 40.0 dB in the X band and 54.6 dB in the K band. The mechanical property of the cotton/TPU hierarchical composites was also reinforced, where the elongation at break and toughness values of the TPU/SCF/mLDH1/C2 hierarchical composite were 21.47 and 18.30 times higher than those of pure TPU, respectively. These mechanically strong hierarchical composites have brought a promising attempt to broaden their practical application, removing the fire hazards and electromagnetic waves radiation from the environment.
Collapse
Affiliation(s)
- Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Chenxin Nie
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Songqiong Jiang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Hengrui Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD 4300, Australia
| |
Collapse
|
9
|
Luo S, Li Q, Xue Y, Zhou B, Feng Y, Liu C. Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. J Colloid Interface Sci 2023; 652:1645-1652. [PMID: 37666196 DOI: 10.1016/j.jcis.2023.08.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Ultrathin MXene composite films, with their flexibility, metal-level conductivity, and multifunction compatibility, are an ideal choice for electromagnetic interference (EMI) shielding materials in future developments. Nonetheless, the dilemma between electrical conductivity and robustness in these composite films remains a challenge. Herein, an ammonium polyphosphate (APP) assisted interfacial multiple cross-linking strategy, achieved via simple solution blending and filtration, was employed to reinforce and toughen the "brick-mortar" layered MXene/bacterial cellulose (MBCA) films without compromising their conductivity and EMI shielding ability. The introduction of a small amount of APP leads to multiple interfacial interactions between MXene and bacterial cellulose, resulting in significant enhancements in mechanical strength (360.8 MPa), Young's modulus (2.8 GPa), fracture strain (17.3%), and toughness (34.1 MJ/m3). Concurrently, the MBCA film displayed satisfactory conductivity values of 306.7 S/cm and an EMI SE value of 41 dB upon optimizing the MXene content. Additionally, the MBCA film demonstrated a consistent, rapid-response photothermal conversion capability, achieving a photothermal conversion temperature of 97 °C under a light intensity of 200 mW/m2. Consequently, this tough and multifunctional EMI shielding film holds substantial promise for protecting electronic equipment.
Collapse
Affiliation(s)
- Shilu Luo
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Qi Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yajun Xue
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Bing Zhou
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Liang C, Qiu H, Zhang Y, Liu Y, Gu J. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci Bull (Beijing) 2023; 68:1938-1953. [PMID: 37541794 DOI: 10.1016/j.scib.2023.07.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The rapid development of mobile devices has greatly improved the lives of people, but they have also caused problems with electromagnetic interference (EMI) and information security. Therefore, there is an urgent need to develop high performance EMI shielding materials to suppress electromagnetic radiation and prevent information leakage. Some reports point out that the self-orientation behavior of fillers under external forces contributes to the improvement of EMI shielding performance. So how to construct an effective filler orientation structure in the polymer matrix is becoming a hot topic in the research of EMI shielding materials. In view of the fact that there are few reports on the preparation of polymer matrix EMI shielding composites by external field induction, from this perspective, we first highly focus on strategies for the construction of conductive networks within composites based on external field induction. Subsequently, the research progress on the preparation of polymer matrix EMI shielding composites by inducing the orientation of inorganic fillers through external fields, including temperature, electrostatic, gravity, mechanical force and magnetic fields, is organized and sorted out in detail. Notably, the particular response relationship between the unique composite structures prepared by external field induction and the incident electromagnetic waves is further dissected. Finally, the key scientific problems that need to be solved in the preparation of polymer matrix EMI shielding composites assisted by external fields are proposed. The approach discussed and the strategies proposed are expected to provide some guidance for the innovative design of high-performance polymer matrix EMI shielding composites.
Collapse
Affiliation(s)
- Chaobo Liang
- Shanxi Key Laboratory of Nano Functional Composites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaqing Liu
- Shanxi Key Laboratory of Nano Functional Composites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
11
|
Zhang Q, Wang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Structural design and preparation of Ti 3C 2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding. NANOSCALE ADVANCES 2023; 5:3549-3574. [PMID: 37441247 PMCID: PMC10334419 DOI: 10.1039/d3na00130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Electromagnetic interference (EMI) is a pervasive and harmful phenomenon in modern society that affects the functionality and reliability of electronic devices and poses a threat to human health. To address this issue, EMI-shielding materials with high absorption performance have attracted considerable attention. Among various candidates, two-dimensional MXenes are promising materials for EMI shielding due to their high conductivity and tunable surface chemistry. Moreover, by incorporating magnetic and conductive fillers into MXene/polymer composites, the EMI shielding performance can be further improved through structural design and impedance matching. Herein, we provide a comprehensive review of the recent progress in MXene/polymer composites for absorption-dominated EMI shielding applications. We summarize the fabrication methods and EMI shielding mechanisms of different composite structures, such as homogeneous, multilayer, segregated, porous, and hybrid structures. We also analyze the advantages and disadvantages of these structures in terms of EMI shielding effectiveness and the absorption ratio. Furthermore, we discuss the roles of magnetic and conductive fillers in modulating the electrical properties and EMI shielding performance of the composites. We also introduce the methods for evaluating the EMI shielding performance of the materials and emphasize the electromagnetic parameters and challenges. Finally, we provide insights and suggestions for the future development of MXene/polymer composites for EMI shielding applications.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- School of Materials and Environmental Engineering, Chizhou University Chizhou 247000 China
| | - Qi Wang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jian Cui
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuai Zhao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangfa Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ailin Gao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yehai Yan
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
12
|
Feng X, Wang C, Shang S, Liu H, Huang X, Jiang J, Song Z, Zhang H. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr Polym 2023; 311:120786. [PMID: 37028884 DOI: 10.1016/j.carbpol.2023.120786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Flexible hydrogels are promising materials for the preparation of artificial intelligence electronics and wearable devices. Introducing a rigid conductive material into the hydrogels can improve their electrical conductivities. However, it may have poor interfacial compatibility with the flexible hydrogel matrix. Therefore, we prepared a hydrogel containing flexible and highly ductile liquid metal (LM). The hydrogel can be used as a strain sensor to monitor human motion. The hydrogel showed many properties (i.e., recyclability, EMI shielding properties (33.14 dB), antibacterial (100 %), strain sensitivity (gauge factor = 2.92), and self-healing) that cannot be achieved simultaneously by a single hydrogel. Furthermore, the recycling of LM and their application to hydrogel-based EMI shielding materials have not been investigated previously. Due to its excellent properties, the prepared flexible hydrogel has great potential for applications in artificial intelligence, personal healthcare, and wearable devices.
Collapse
Affiliation(s)
- Xuezhen Feng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China; College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu 210042, China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China.
| |
Collapse
|
13
|
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
14
|
Zhang H, Lin S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. MEMBRANES 2023; 13:315. [PMID: 36984702 PMCID: PMC10054763 DOI: 10.3390/membranes13030315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation. However, membrane shielding materials with general functions cannot effectively exert their shielding performance in all fields, and membrane shielding materials used in different fields must have specific functions under their use conditions. The aim of this review was to provide a comprehensive review of these issues. Firstly, the causes of electromagnetic/radiation pollution were briefly introduced and comprehensively identified and analyzed. Secondly, the strategic solutions offered by membrane shielding materials to address electromagnetic/radiation problems were discussed. Then, the design concept, technical innovation, and related mechanisms of the existing membrane shielding materials were expounded, the treatment methods adopted by scholars to study the environment and performance change laws were introduced, and the main difficulties encountered in this area of research were summarized. Finally, on the basis of a comprehensive analysis of the protection provided by membrane shielding materials against electromagnetic/radiation pollution, the action mechanism of membrane shielding materials was expounded in detail, and the research progress, structural design and performance characterization techniques for these materials were summarized. In addition, the future challenges were prospected. This review will help universities, research institutes, as well as scientific and technological enterprises engaged in related fields to fully understand the design concept and research progress of electromagnetic/radiation-contaminated membrane shielding materials. In addition, it is hoped that this review will facilitate efforts to accelerate the research and development of membrane shielding materials and offer potential applications in areas such as electronics, nuclear medicine, agriculture, and other areas of industry.
Collapse
Affiliation(s)
- Hengtong Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Shi Y, Yao A, Han J, Wang H, Feng Y, Fu L, Yang F, Song P. Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J Colloid Interface Sci 2023; 640:179-191. [PMID: 36848771 DOI: 10.1016/j.jcis.2023.02.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Integrating high flame retardancy and excellent electromagnetic interference (EMI) shielding into polymetric materials is extremely necessary, and well dispersing conductive fillers into polymeric materials is still a great challenge because of incompatible interfacial polarity between polymer matrix and conductive fillers. Therefore, under the premise of maintaining integral conductive films in the process of hot compression, constructing a novel EMI shielding polymer nanocomposites where conductive films closely adhere to polymer nanocmposites layers should be a fascinating stratety. In this work, salicylaldehyde-modified chitosan decorated titanium carbide nanohybrid (Ti3C2Tx-SCS) was combined with piperazine-modified ammonium polyphosphate (PA-APP) to fabricate thermoplastic polyurethane (TPU) nanocomposites, which were used for construction of hierarchical nanocomposite films by inserting reduced graphene oxide (rGO) films into TPU/PA-APP/Ti3C2Tx-SCS nanocomposite layers through our self-developed air assisted hot pressing technique. The total heat release, total smoke release and total carbon monoxide yield for TPU nanocomposite containing 4.0 wt% Ti3C2Tx-SCS nanohybrid were 58.0%, 58.4% and 75.8% lower than those of pristine TPU, respectively. Besides, the hierarchical TPU nanocomposite film containing 1.0 wt% Ti3C2Tx-SCS presented an averaged EMI shielding effectiveness of 21.3 dB in X band. This work provides a promising strategy for fabricating fire safe and EMI shielding polymer nanocomposites.
Collapse
Affiliation(s)
- Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China.
| | - Ansheng Yao
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China
| | - Junqiang Han
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China
| | - Hengrui Wang
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Libi Fu
- College of Civil Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China
| | - Fuqiang Yang
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, PR China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4350, Australia.
| |
Collapse
|
16
|
Tian X, Bai H, Chen T, Sang S, Deng H, Jiang X. Poly(lactic acid)/poly (butylene succinate)/boron nitride nanosheet composites with high thermal conductivity: a novel biodegradable electronic packaging material. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Temperature controlled yolk-shell-like VO2(M)/Ti3C2Tx composite films for high-performance electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Zhao J, Wang C, Wang C, Zhang K, Cong B, Yang L, Zhao X, Chen C. Synergistic effects of boron nitride sheets and reduced graphene oxide on reinforcing the thermal conduction,
SERS
performance and thermal property of polyimide composite films. J Appl Polym Sci 2022. [DOI: 10.1002/app.53401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Junyu Zhao
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Chunbo Wang
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun P. R. China
| | - Chengyang Wang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Ke Zhang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Bing Cong
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Lan Yang
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Xiaogang Zhao
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| | - Chunhai Chen
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry Jilin University Changchun P. R. China
| |
Collapse
|
19
|
Wang X, Zhang H, Li L. Structural design of poly(vinyl alcohol)/carbon fiber composite film used for antistatic packaging via asynchronous biaxial stretching. J Appl Polym Sci 2022. [DOI: 10.1002/app.53160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Huili Zhang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
20
|
Multifunctional Waterborne Polyurethane Nanocomposite Films with Remarkable Electromagnetic Interference Shielding, Electrothermal and Solarthermal Performances. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Peng T, Wang S, Xu Z, Tang T, Zhao Y. Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS OMEGA 2022; 7:29161-29170. [PMID: 36033682 PMCID: PMC9404508 DOI: 10.1021/acsomega.2c03219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
Abstract
Rapid development of highly integrated electronic and telecommunication devices has led to urgent demands for electromagnetic interference (EMI) shielding materials that incorporate flame retardancy, and more desirably the early fire detection ability, due to the potential fire hazards caused by heat propagation and thermal failure of the devices during operation. Here, multifunctional flexible films having the main dual functions of high EMI shielding performance and repeatable fire detection ability are fabricated by vacuum filtration of the mixture of MXene and aramid nanofiber (ANF) suspensions. ANFs serve to reinforce MXene films via the formation of hydrogen bonding between the carbonyl groups of ANFs and the hydroxyl groups of MXene. When the ANF content is 20 wt %, the tensile strength of the film is increased from 24.6 MPa for a pure MXene film to 79.5 MPa, and such a composite film (9 μm thickness) exhibits a high EMI shielding effectiveness (SE) value of ∼40 dB and a specific SE (SSE) value of 4361.1 dB/mm. Upon fire exposure, the composite films can trigger the fire detection system within 10 s owing to the thermoelectric property of MXene. The self-extinguishing feature of ANFs ensures the structural integrity of the films during burning, thus allowing for continuous alarm signals. Moreover, the films also exhibit excellent Joule heating and photothermal conversion performances with rapid response and sufficient heating reliability.
Collapse
Affiliation(s)
- Tianshu Peng
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Shanchi Wang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia
Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Tingting Tang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Yan Zhao
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| |
Collapse
|
22
|
Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials. J Colloid Interface Sci 2022; 620:273-283. [DOI: 10.1016/j.jcis.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/21/2023]
|
23
|
Hu J, Liang C, Li J, Lin C, Liang Y, Dong D. Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33817-33828. [PMID: 35850587 DOI: 10.1021/acsami.2c07741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electromagnetic interference (EMI) shielding materials are highly necessary to solve the problem of electromagnetic radiation. Transition-metal carbide/nitride (MXene) materials offer great potential for the construction of high-performance EMI shields because of their high electrical conductivity and versatile surface chemistry. However, MXene generally suffers from poor mechanical and oxidation-resistant properties, which hinders its practical applications. Herein, flexible, strong, and hydrophobic sandwich-structured composite films (H-S-MXene), consisting of a conductive MXene layer and supporting aramid nanofiber layer, were fabricated using step-by-step vacuum-assisted filtration and dip coating. Given the unique sandwich structure, hydrogen bonding interactions, and covalent cross-linking of the MXene sheets, the H-S-MXene composite films demonstrated simultaneously excellent EMI shielding and mechanical properties. The EMI shielding effectiveness of the H-S-MXene composite film with 20 wt % MXene content reached 46.1 dB at thickness of 23.2 ± 0.5 μm, and the tensile strength of the film reached 302.1 MPa, which outperformed other reported EMI shielding materials. The excellent mechanical flexibility and hydrophobicity of the H-S-MXene composite films ensured a stable EMI shielding performance, which could withstand cycled bending, torsion, and exposure to aqueous environments. These impressive features made the H-S-MXene composite films promising candidates for electronic devices and aerospace. This study provides important guidance for the rational design of stable MXene-based composites with advanced properties.
Collapse
Affiliation(s)
- Jiana Hu
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Caiyun Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiadong Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chuanwei Lin
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongjiu Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Liu H, Wang Z, Wang J, Yang Y, Wu S, You C, Tian N, Li Y. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. NANOSCALE 2022; 14:9218-9247. [PMID: 35726826 DOI: 10.1039/d2nr02224a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nowadays, the extensive utilization of electronic devices and equipment inevitably leads to severe electromagnetic interference (EMI) issues. Therefore, EMI shielding materials have drawn considerable attention, and great effort has been devoted to the exploration of high-efficiency EMI shielding materials. As a novel kind of 2D transition metal carbide material, MXenes have been widely investigated for EMI shielding in the past few years due to their extraordinary electrical conductivity, large specific surface area, light weight, and easy processability. In view of the great achievements in MXene-based materials for EMI shielding, herein, we reviewed the recent studies on the structural design and evolution of MXenes and their composites for EMI shielding. First, the methods for structural control of MXenes, including HF etching, in situ HF etching, fluorine-free etching, electrochemical etching, and molten salt etching, are systematically summarized. Then we illustrate the fundamental relationship between the microstructure of MXenes and the EMI shielding mechanism. In the following, the effects of different synthesis methods and structures of MXene-based composite materials as well as their EMI shielding performances are comprehensively discussed. Lastly, future prospects for the development of MXene-based composite materials in EMI shielding applications are commented on.
Collapse
Affiliation(s)
- Heguang Liu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhe Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yujia Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shaoqing Wu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Caiyin You
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Na Tian
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
25
|
Wang W, Liu Y, Ye L, Coates P, Caton-Rose F, Zhao X. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application. J Biomed Mater Res B Appl Biomater 2022; 110:2480-2493. [PMID: 35674722 DOI: 10.1002/jbm.b.35106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Poly (lactic acid) (PLA) has been proposed as a promising orthopedic implant material, whereas insufficient mechanical strength, unsatisfied biocompatibility and inappropriate degradation rate restrict its further application. In this work, self-reinforced poly (lactic acid)-b-poly(lactide-co-caprolactone) (PLA-b-PLCL) block copolymer with long-chain branches was fabricated through two-stage orientation. Compared with smooth and hydrophobic PLA surface, the surface of PLA-b-PLCL presented micro-phase separated structure with improved hydrophilicity, and cells seeded on it showed improved adhesion/proliferation and high alkaline phosphatase (ALP) activity. After the 1st stage orientation at temperature higher than Tg1 (glass transition temperature of PLA phase), the amount of CH3 and CO groups on surface of PLA-b-PLCL increased, while "groove-ridge" structure formed, resulting in enhancement of surface hydrophobicity. After the 2nd stage orientation at Tg1 ~ Tg2 (glass transition temperature of PLCL phase), surface hydrophobicity/amount of CO groups further increased and "groove-ridge" structure became more significant. Due to suitable wettability and enhanced material-cell mechanical interlocking, cell proliferation/ALP activity were improved and a continuous cell layer formed on sample surface. During in vitro degradation in phosphate buffered saline solution, by introduction of PLCL segments, the crystallinity decreased and solution absorption increased, resulting in a rapid deterioration of mechanical properties. After the 1st stage orientation, a dense microfibrillar structure with high crystallinity formed, which hindered diffusion of solution and delay hydrolytic degradation. After the 2nd stage orientation, PLCL segments were arranged more closely, resulting in a further inhibition of degradation, which was helpful for controlling the strength decay rate of PLA as bone fixation materials.
Collapse
Affiliation(s)
- Wuyou Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Yalong Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Phil Coates
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Fin Caton-Rose
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Yu S, Huang M, Hao R, He S, Liu H, Liu W, Zhu C. Recent advances in thermally conductive polymer composites. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymer matrix composites (PMCs) with high thermal conductivity (TC) play an important role in improving the heat dissipation capacity of a new generation of electronic devices, particularly for 5G and aviation applications. Over the last few decades, considerable efforts have been made in the fabrication of highly thermally conductive PMCs. Advances in the thermal conduction mechanism of polymer composites are induced to, and then commonly used thermally conductive fillers are presented. In the following, the factors affecting the TC of polymer composites are discussed in detail, including fillers, interfaces, polymer matrices and processing technologies. Special attention is paid to the thermally conductive fillers. Then, some application areas of thermally conductive polymer composites are introduced. Finally, the deficiencies and future development trends in this research field are put forward. It is expected that this review will provide some beneficial inspiration in improving the TC of PMCs.
Collapse
Affiliation(s)
- Shuaiqiang Yu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Rui Hao
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, P.R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| |
Collapse
|
27
|
Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kunpeng Ruan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
28
|
Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS NANO 2022; 16:6700-6711. [PMID: 35333052 DOI: 10.1021/acsnano.2c01323] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-strength, flexible, and multifunctional characteristics are highly desirable for electromagnetic interference (EMI) shielding materials in the field of electric devices. In this work, inspired by natural nacre, we fabricated large-scale, layered MXene/amarid nanofiber (ANF) nanocomposite papers by blade-coating process plus sol-gel conversion step. The as-synthesized papers possess excellent mechanical performance, that is, exceptional tensile strength (198.80 ± 5.35 MPa), large strain (15.30 ± 1.01%), and good flexibility (folded into various models without fracture), which are ascribed to synergetic interactions of the interconnected three-dimensional network frame and hydrogen bonds between MXene and ANF. More importantly, the papers with extensive continuous conductive paths formed by MXene nanosheets present a high EMI shielding effectiveness of 13188.2 dB cm2 g-1 in the frequency range of 8.2-12.4 GHz. More interestingly, the papers show excellent Joule heating performance with a fast thermal response (<10 s) and a low driving voltage (≤4 V). As such, the large-scale MXene/ANF papers are considered as promising alternatives in a wide range of applications in electromagnetic shielding and thermal management.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyan Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiale Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
29
|
Zhang Y, Gu J. A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites. NANO-MICRO LETTERS 2022; 14:89. [PMID: 35362900 PMCID: PMC8976017 DOI: 10.1007/s40820-022-00843-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 05/13/2023]
Abstract
The rapid development of aerospace weapons and equipment, wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference (EMI) shielding composites. However, most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality. In response to this, based on the research works of relevant researchers as well as our research group, three possible directions to break through the above bottlenecks are proposed, including construction of efficient conductive networks, optimization of multi-interfaces for lightweight and multifunction compatibility design. The future development trends in three directions are prospected, and it is hoped to provide certain theoretical basis and technical guidance for the preparation, research and development of polymer-based EMI shielding composites.
Collapse
Affiliation(s)
- Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
30
|
Chen C, Zhao X, Ye L. Low Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Polyoxymethylene/Carbon Nanotube Nanocomposites with Conductive Segregated Networks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chuanliang Chen
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Yang G, Zhang Q. In-situ Polymerization and Flame Retardant Mechanism of Bio-based Nitrogen and Phosphorus Macromolecular Flame Retardant in Plywood. Macromol Rapid Commun 2022; 43:e2200018. [PMID: 35212435 DOI: 10.1002/marc.202200018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Indexed: 11/10/2022]
Abstract
To improve the flame retardant performance of the plywood and reduce the reagent loss and moisture absorption of the flame retardant, the bio-based supramolecular flame retardant has been prepared by vacuum-pressure impregnation and high-temperature in-situ polymerization in plywood. The best value of bonding strength appears at 170 ℃, and the LOI of 170BF-B plywood is 42.3%. After hot pressing, the moisture absorption rate of 170BF-B veneer is only 18.51%, while the loss resistance rate achieves 83.45%. Its residue at 700 ℃ is 91.36% higher than that of poplar veneer. In the combustion process, the PHRR and HRR of 170BF-B plywood are only 10.69% and 37.11% of that of untreated plywood. After combustion, an intumescent flame retardant layer exhibits a graphitization trend. In the flame retardant layer, there are not only functional groups, such as P = O, PO4 3- , P-O-C decomposed by flame retardant but also characteristic functional groups of wood fiber, like C = O, C-H, etc. The prepolymer BF-B, which is composed of phytic acid, urea and, dicyandiamide polymerized with chitosan or lignocellulose to form a supramolecular flame retardant connected with P-O-C and P-O-N functional groups, thus improving the flame retardant and anti-loss property by in-situ polymerization. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guochao Yang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083, P. R. China
| | - Qiuhui Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083, P. R. China
| |
Collapse
|
32
|
Wang Y, Zhang Y, Zhang Z, Li T, Jiang J, Zhang X, Liu T, Qiao J, Huang J, Dong W. Pistachio-Inspired Bulk Graphene Oxide-Based Materials with Shapeability and Recyclability. ACS NANO 2022; 16:3394-3403. [PMID: 35129948 DOI: 10.1021/acsnano.2c00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, despite the fact that recent progress has been reported to mimic natural structural materials (especially nacre), designing bioinspired ultrastrong composites in a universal, viable, and scalable manner still remains a long-standing challenge. In particular, pistachio shells show high tissue strength attributed to the cellulose sheet laminated microstructures. Compared with nacre, pistachio shells own interlocking mortise-tenon joints in their structure, which offer higher energy dissipation and deformability. Here we present a strategy to produce nanocomposites with pistachio-mimetic structures through repeated kneading of graphene oxide (GO) in a dynamic covalent and supramolecular poly(sodium thioctic) (pST) system. The dynamic nature of the polymeric backbones endows the resultant GO-based composite with full recyclability and three-dimensional shapeability. The superior mechanical properties of the pistachio-mimetic composite can be attributed to the mortise-tenon joints design in the structure, which has not been achieved in the nacre-mimetic composite. The resulting composite also exhibits high thermal conductivity (15.6 W/(m·K)), yielding an alternative approach to design in engineered and thermal management materials.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xuhui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jinliang Qiao
- SINOPEC, Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Jing Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
33
|
Song P, Ma Z, Qiu H, Ru Y, Gu J. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. NANO-MICRO LETTERS 2022; 14:51. [PMID: 35084576 PMCID: PMC8795265 DOI: 10.1007/s40820-022-00798-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 05/21/2023]
Abstract
With the rapid development of fifth-generation mobile communication technology and wearable electronic devices, electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention. Therefore, the design and development of highly efficient EMI shielding materials are of great importance. In this work, the three-dimensional graphene oxide (GO) with regular honeycomb structure (GH) is firstly constructed by sacrificial template and freeze-drying methods. Then, the amino functionalized FeNi alloy particles (f-FeNi) are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel. Finally, the rGH@FeNi/epoxy EMI shielding composites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin. Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect, the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt% (rGH and f-FeNi are 1.2 and 0.9 wt%, respectively) exhibit a high EMI shielding effectiveness (EMI SE) of 46 dB, which is 5.8 times of that (8 dB) for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction. At the same time, the rGH@FeNi/epoxy composites also possess excellent thermal stability (heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0 °C respectively) and mechanical properties (storage modulus is 8296.2 MPa).
Collapse
Affiliation(s)
- Ping Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yifan Ru
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|