1
|
Mafi A, Hedayati N, Milasi YE, Kahkesh S, Daviran M, Farahani N, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A. The function and mechanism of circRNAs in 5-fluorouracil resistance in tumors: Biological mechanisms and future potential. Pathol Res Pract 2024; 260:155457. [PMID: 39018926 DOI: 10.1016/j.prp.2024.155457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
5-Fluorouracil (5-FU) is a well-known chemotherapy drug extensively used in the treatment of breast cancer. It works by inhibiting cancer cell proliferation and inducing cell death through direct incorporation into DNA and RNA via thymidylate synthase (TS). Circular RNAs (circRNAs), a novel family of endogenous non-coding RNAs (ncRNAs) with limited protein-coding potential, contribute to 5-FU resistance. Their identification and targeting are crucial for enhancing chemosensitivity. CircRNAs can regulate tumor formation and invasion by adhering to microRNAs (miRNAs) and interacting with RNA-binding proteins, regulating transcription and translation. MiRNAs can influence enzymes responsible for 5-FU metabolism in cancer cells, affecting their sensitivity or resistance to the drug. In the context of 5-FU resistance, circRNAs can target miRNAs and regulate biological processes such as cell proliferation, cell death, glucose metabolism, hypoxia, epithelial-to-mesenchymal transition (EMT), and drug efflux. This review focuses on the function of circRNAs in 5-FU resistance, discussing the underlying molecular pathways and biological mechanisms. It also presents recent circRNA/miRNA-targeted cancer therapeutic strategies for future clinical application.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minoo Daviran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137:111285. [PMID: 33485118 DOI: 10.1016/j.biopha.2021.111285] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) has been an important anti-cancer drug to date. With an increase in the knowledge of its mechanism of action, various treatment modalities have been developed over the past few decades to increase its anti-cancer activity. But drug resistance has greatly affected the clinical use of 5-FU. Overcoming this chemoresistance is a challenge due to the presence of cancer stem cells like cells, cancer recurrence, metastasis, and angiogenesis. In this review, we have systematically discussed the mechanism of 5-FU resistance and advent strategies to increase the sensitivity of 5-FU therapy including resistance reversal. Special emphasis has been given to the cancer stem cells (CSCs) mediated 5-FU chemoresistance and its reversal process by different approaches including the DNA repair inhibition process.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
4
|
Tajirika T, Tokumaru Y, Taniguchi K, Sugito N, Matsuhashi N, Futamura M, Yanagihara K, Akao Y, Yoshida K. DEAD-Box Protein RNA-Helicase DDX6 Regulates the Expression of HER2 and FGFR2 at the Post-Transcriptional Step in Gastric Cancer Cells. Int J Mol Sci 2018; 19:ijms19072005. [PMID: 29987267 PMCID: PMC6073682 DOI: 10.3390/ijms19072005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023] Open
Abstract
The human DEAD/H-box RNA helicase DDX6 (RCK/p54) is a protein encoded by the fusion gene from the t(11;14)(q23;q32) chromosomal translocation observed in human B-cell lymphoma cell line RC-K8. DDX6 has a variety of functions such as translation initiation, pre-mRNA splicing, and ribosome assembly. However, details of the regulatory mechanism governing DDX6 and the functions of DDX6 are largely unknown. Previously, we reported that DDX6 is overexpressed in most malignant cell lines and clinical colorectal tumor samples and that DDX6 positively contributes to the pathogenesis of various cancers. In the current study, we aimed at revealing the function of DDX6 in HER2 and FGFR2 related human gastric cancer (GC) by using clinical samples and GC cell lines. DDX6 protein was overexpressed in about 60% of the clinical samples; HER2, in 35%; and FGFR2, in 30%, (n = 20). Interestingly, the DDX6 protein was overexpressed in all HER2-positive samples (n = 7), and in 83% (5 of 6) of the FGFR2-positive samples, which could reflect the contribution of DDX6 to the expression of HER2 and FGFR2. In the GC cell line MKN7, which has HER2 amplification, the knockdown of DDX6 by siR-DDX6 led to the decreased expression of the HER2 protein. On the other hand, the knockdown of HER2 did not influence the DDX6 expression. Similar results were also obtained for the KATO-III and HSC39 cell lines having amplified FGFR2 expression. The increased expression of DDX6 induced a significantly increased expression of the HER2 protein without increasing the mRNA expression. The results of an RNP Immunoprecipitation (RIP)-assay using GC cells indicated that the DDX6 protein acted as an RNA-binding protein for HER2 and FGFR2 mRNAs and positively regulated their post-transcriptional processes. These findings demonstrated that DDX6 was an upstream molecule that positively regulated the expression of HER2 and FGFR2 at the post-transcriptional step in GC cells.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Toshihiro Tajirika
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
- Translational Research Program Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwa, Chiba 277-8577, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
5
|
Gupta I, Ouhtit A, Al-Ajmi A, Rizvi SGA, Al-Riyami H, Al-Riyami M, Tamimi Y. BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes. Endocr Connect 2018; 7:65-77. [PMID: 29138235 PMCID: PMC5744628 DOI: 10.1530/ec-17-0173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
In Oman, breast cancer is most common, representing approximately more than 25% of all cancers in women. Relatively younger populations of patients (25-40 years) present surprisingly with an aggressive phenotype and advanced tumor stages. In this study, we investigated differential gene expressions in Luminal A, Luminal B, triple-negative and Her2+ breast cancer subtypes and compared data to benign tumor samples. We identified a potential candidate gene BRIP1, showing differential expression in the four breast cancer subtypes examined, suggesting that BRIP1 has the profile of a useful diagnostic marker, suitable for targeted therapeutic intervention. RT-qPCR and Western blotting analysis showed higher BRIP1 expression in luminal samples as compared to triple-negative subtype patient's samples. We further screened BRIP1 for eventual mutations/SNPs/deletions by sequencing the entire coding region. Four previously identified polymorphisms were detected, one within the 5'-UTR region (c.141-64G > A) and three in the BRCA-binding domain (c.2755T > C, c.2647G > A and c.3411T > C). Kaplan-Meier analysis revealed that patients with overexpression of BRIP1 displayed a poor survival rate (P < 0.05). BRIP1 has a dual function of an oncogene and a tumor suppressor gene in addition to its role as a potential biomarker to predict survival and prognosis. Data obtained in this study suggest that BRIP1 can plausibly have an oncogenic role in sporadic cancers.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of GeneticsCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - Allal Ouhtit
- Department of Biological and Environmental SciencesCollege of Arts and Sciences, Qatar University, Doha, Qatar
| | - Adil Al-Ajmi
- Department of SurgeryCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - Syed Gauhar A Rizvi
- Department of Family Medicine and Public HealthCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - Hamad Al-Riyami
- Department of GeneticsCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - Marwa Al-Riyami
- Department of PathologyCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - Yahya Tamimi
- Department of BiochemistryCollege of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| |
Collapse
|
6
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
7
|
Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EWF. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets 2016; 17:164-77. [PMID: 25418858 PMCID: PMC5403963 DOI: 10.2174/1389450115666141122211549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/22/2022]
Abstract
FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied cellular response through regulating the expression of genes essential for DNA damage sensing, mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic option for improving the efficacy and selectivity of DNA damage agents, particularly in genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
8
|
Taniguchi K, Sakai M, Sugito N, Kuranaga Y, Kumazaki M, Shinohara H, Ueda H, Futamura M, Yoshida K, Uchiyama K, Akao Y. PKM1 is involved in resistance to anti-cancer drugs. Biochem Biophys Res Commun 2016; 473:174-180. [PMID: 27012213 DOI: 10.1016/j.bbrc.2016.03.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Resistance to chemotherapy is a crucial problem in the clinical situation. To overcome this issue, many mechanisms of chemoresistance have been elucidated so far. However, this problem still has not been solved completely. In this study, we investigated the mechanism of chemoresistance from the view of cancer metabolism-related genes, especially focusing on the expression profile of pyruvate kinase muscle (PKM) isoforms, which are rate-limiting enzymes in cancer-specific metabolism (Warburg effect). Herein, we showed that PKM1, which promotes oxidative phosphorylation (OXPHOS), was commonly up-regulated in various chemoresistant cells. To clarify the functions of PKM1 in chemoresistance, we investigated effects of PKM1 expression in DLD-1 parental, 5-FU-resistant and oxaliplatin-resistant DLD-1 cells. The overexpression of PKM1 resulted in resistance of the parental cells to 5-FU and oxaliplatin. Moreover, gene-silencing of PKM1 induced apoptosis in these cells including the resistant cells by causing a decrease in the mitochondrial membrane potential. Furthermore, combination therapy using 5-FU or oxaliplatin with siR-PKM1 was also effective against the resistant cells. Our findings should lead to the development of new agents that can cancel the chemoresistance from the view of cancer energy metabolism.
Collapse
Affiliation(s)
- Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of General and Gastroenterological Surgery, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Miku Sakai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
9
|
Xiong T, Chen X, Wei H, Xiao H. Influence of PJ34 on the genotoxicity induced by melphalan in human multiple myeloma cells. Arch Med Sci 2015; 11:301-6. [PMID: 25995744 PMCID: PMC4424240 DOI: 10.5114/aoms.2014.43164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/13/2014] [Accepted: 02/03/2014] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the potential biological activity of N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride (PJ34) on the genotoxicity induced by melphalan in human multiple myeloma cells. MATERIAL AND METHODS The inhibitory effects of the drugs on the growth of RPMI8226 cells were determined by Cell Counting Kit-8 (CCK-8) assay. The expression of Fanconi anemia/breast cancer (FA/BRCA) pathway related genes was determined by western blot analysis. Cell cycle phase and apoptosis were analyzed by flow cytometry. Coadministration of PJ34 and melphalan had additional effects on cell cycle distribution and enhanced apoptosis of RPMI8226 cells. PJ34 plus melphalan inhibited cell-cycle progression, as evidenced by the increased proportion of cells in the G2/M phase with the decreasing proportion of cells in the G0/1 and S phases. RESULTS However, no significant synergistic effect of PJ34 and melphalan on cell proliferation was observed. These effects were accompanied by inhibition of the FA/BRCA pathway by downregulation of Fanconi D2 (FANCD2) protein expression. The results showed that treatment with 60 µmol/l of PJ34 previously to melphalan administration increased cell apoptosis. Pretreatment also caused cell cycle arrest. CONCLUSIONS This study suggests that enhancement of melphalan efficacy may be best achieved by the poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor PJ34. The effects of PJ34 are associated with inhibition of the FA/BRCA pathway, increased apoptosis percentage, and G2/M cell cycle arrest. Administration of PJ34 has been shown to protect DNA from damage induced by melphalan. This corroborates the biological activities of PJ34 and points to the need for further studies.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoqiong Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Heng Wei
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Xiong T, Wei H, Chen X, Xiao H. PJ34, a poly(ADP-ribose) polymerase (PARP) inhibitor, reverses melphalan-resistance and inhibits repair of DNA double-strand breaks by targeting the FA/BRCA pathway in multidrug resistant multiple myeloma cell line RPMI8226/R. Int J Oncol 2014; 46:223-32. [PMID: 25351371 DOI: 10.3892/ijo.2014.2726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 11/06/2022] Open
Abstract
There is still no ideal treatment for multidrug resistant multiple myeloma, looking for drugs which can reverse chemotherapy resistance and enhance curative effects of chemotherapy drugs becomes a problem that needs to be solved urgently. Poly(ADP-ribose) polymerase inhibitors appear to be an important tool for medical therapy of several malignancies. In the present study, we investigated the potential of the PARP-1 inhibitor PJ34, in vitro, to further enhance the efficacy of the traditional chemotherapy drug melphalan in the multidrug-resistant multiple myeloma cell line RPMI8226/R. The effects of different concentrations of PJ34 and melphalan on cell proliferation were determined by the CCK-8 assay. The expressions of FA/BRCA pathway-related factors were detected by western blotting and RT-PCR. The percentage of cell apoptosis was measured with flow cytometry. DNA double-strand break (DSB) repair was quantified by γH2AX immunofluorescence. In addition, DNA damage repair at the level of the individual cell was determined by comet assay. Co-administration of PJ34 and melphalan had synergistic inhibitory effects on the proliferation of RPMI8226/R cells, suggesting more powerful antitumor activities. The apoptosis percentage also was increased more obviously by the treatment of melphalan plus PJ34. The activation of FA/BRCA pathway was inhibited by downregulation of related factors including FANCD2, BRCA2 and Rad51. PJ34 significantly increased the ratio of γH2AX-positive cells and the number of foci/cells. The comet tail rate of cells, tail length, tail moment and Olive tail moment all increased after PJ34 treatment in RPMI8226/R cells. These results indicate that PJ34 combined treatment with melphalan produces synergistic effects and reverses multidrug resistance of RPMI8226/R cells effectively. PJ34 cannot induce DNA damage directly, but it may increase the DNA damage induced by melphalan through inhibiting DNA damage repair. The suppression of FA/BRCA pathway may be the mechanism. Therefore, we suggest that PARP inhibitors may deserve future investigations as tools for medical treatment of multidrug resistant multiple myeloma.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Heng Wei
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoqiong Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
11
|
Brosh RM, Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet 2014; 5:372. [PMID: 25374583 PMCID: PMC4204437 DOI: 10.3389/fgene.2014.00372] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023] Open
Abstract
The FANCJ DNA helicase is mutated in hereditary breast and ovarian cancer as well as the progressive bone marrow failure disorder Fanconi anemia (FA). FANCJ is linked to cancer suppression and DNA double strand break repair through its direct interaction with the hereditary breast cancer associated gene product, BRCA1. FANCJ also operates in the FA pathway of interstrand cross-link repair and contributes to homologous recombination. FANCJ collaborates with a number of DNA metabolizing proteins implicated in DNA damage detection and repair, and plays an important role in cell cycle checkpoint control. In addition to its role in the classical FA pathway, FANCJ is believed to have other functions that are centered on alleviating replication stress. FANCJ resolves G-quadruplex (G4) DNA structures that are known to affect cellular replication and transcription, and potentially play a role in the preservation and functionality of chromosomal structures such as telomeres. Recent studies suggest that FANCJ helps to maintain chromatin structure and preserve epigenetic stability by facilitating smooth progression of the replication fork when it encounters DNA damage or an alternate DNA structure such as a G4. Ongoing studies suggest a prominent but still not well-understood role of FANCJ in transcriptional regulation, chromosomal structure and function, and DNA damage repair to maintain genomic stability. This review will synthesize our current understanding of the molecular and cellular functions of FANCJ that are critical for chromosomal integrity.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center Worcester, MA, USA
| |
Collapse
|
12
|
Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EWF. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1316-22. [PMID: 25287128 PMCID: PMC4316173 DOI: 10.1016/j.bbagrm.2014.09.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/07/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
FOXM1 is a transcription factor required for a wide spectrum of essential biological functions, including DNA damage repair, cell proliferation, cell cycle progression, cell renewal, cell differentiation and tissue homeostasis. Recent evidence suggests that FOXM1 also has a role in many aspects of the DNA damage response. Accordingly, FOXM1 drives the transcription of genes for DNA damage sensors, mediators, signal transducers and effectors. As a result of these functions, it plays an integral part in maintaining the integrity of the genome and so is key to the propagation of accurate genetic information to the next generation. Preserving the genetic code is a vital means of suppressing cancer and other genetic diseases. Conversely, FOXM1 is also a potent oncogenic factor that is essential for cancer initiation, progression and drug resistance. An enhanced FOXM1 DNA damage repair gene expression network can confer resistance to genotoxic agents. Developing a thorough understanding of the regulation and function of FOXM1 in DNA damage response will improve the diagnosis and treatment of diseases including cancer, neurodegenerative conditions and immunodeficiency disorders. It will also benefit cancer patients with acquired genotoxic agent resistance. FOXM1 is a potent oncogenic factor essential for cancer initiation, progression and drug resistance. FOXM1 also drives the transcription of genes for DNA damage sensors, mediators, signal transducers and effectors. It plays an integral part in maintaining the integrity of the genome. An enhanced FOXM1 DNA damage repair gene expression network can confer resistance to genotoxic agents.
Collapse
Affiliation(s)
- Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Laura Bella
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Matthew J Burton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Gabriela Nestal de Moraes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
13
|
BRIP1 variations analysis reveals their relative importance as genetic susceptibility factor for cervical cancer. Biochem Biophys Res Commun 2013; 433:232-6. [DOI: 10.1016/j.bbrc.2013.02.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022]
|