1
|
Elhadary M, Elsayed B, Elshoeibi AM, Karen O, Elmakaty I, Alhmoud J, Hamdan A, Malki MI. The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis. Biomedicines 2025; 13:1007. [PMID: 40299690 PMCID: PMC12024592 DOI: 10.3390/biomedicines13041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objective: This study aimed to determine the clinicopathological findings and prognostic value of chemokine receptor 7 (CCR7) expression in patients with breast cancer (BC). Methods: Up to the 25th of March 2025, a search was conducted using five databases: PubMed, Embase, Scopus, Medline, and Web of Science. The methodological standards for the epidemiological research scale were used to assess the quality of the included articles, and Stata software (Stata 19) was used to synthesize the meta-analysis. Results: We considered 12 of 853 studies that included 3119 patients with BC. High CCR7 expression was not associated with age (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.66-1.03); clinicopathological findings, including tumor size (OR 1.062, 95% CI 0.630-1.791); clinical stage (OR 1.753, 95% CI 0.231-13.304); nodal metastasis (OR 1.252, 95% CI 0.571-2.741); or histological differentiation (OR 1.167, 95% CI 0.939-1.450). CCR7 expression did not affect overall survival (hazard ratio 0.996, 95% CI 0.659-1.505). Conclusions: Our quantitative analysis did not reveal an association between CCR7 expression and poor clinicopathological or prognostic features in BC patients. Because of the high heterogeneity and potential publication bias, large high-quality studies are required to further confirm these findings.
Collapse
Affiliation(s)
- Mohamed Elhadary
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.E.); (B.E.); (A.M.E.); (O.K.); (A.H.)
| | - Basel Elsayed
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.E.); (B.E.); (A.M.E.); (O.K.); (A.H.)
| | - Amgad Mohamed Elshoeibi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.E.); (B.E.); (A.M.E.); (O.K.); (A.H.)
| | - Omar Karen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.E.); (B.E.); (A.M.E.); (O.K.); (A.H.)
| | - Ibrahim Elmakaty
- Department of Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jehad Alhmoud
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Ahmad Hamdan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.E.); (B.E.); (A.M.E.); (O.K.); (A.H.)
| | - Mohammed Imad Malki
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Elmakaty I, Elsayed B, Elmarasi M, Kujan O, Malki MI. Clinicopathological and prognostic value of chemokine receptor CCR7 expression in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2023; 23:443-453. [PMID: 36744447 DOI: 10.1080/14737140.2023.2177156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to identify the clinicopathological characteristics and prognostic value of CC chemokine receptor 7 (CCR7) expression in patients with head and neck squamous cell carcinoma (HNSSC). METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed in this meta-analysis. Up to the 2nd of July 2022 a search was conducted using five databases: PubMed, Embase, Scopus, ProQuest, and Web of Science. The methodological standards for the epidemiological research scale were used to assess the quality of the included articles, and Stata software was used to synthesise the meta-analysis. RESULTS We considered 13 of the 615 studies which included 1005 HNSCC patients. High expression of CCR7 increased the pooled odds ratio (OR) of advanced stage, tumour size, metastasis and recurrence by 2.82 [95% confidence interval (CI) 1.84 to 4.33], 2.48 (95% CI 1.68, to 3.67), 3.57, 95% CI 2.25 to 5.05) and 3.93 (95% CI 2.03 to 7.64), respectively. High CCR7 reduced overall patient survival [hazard ratio 2.62 (95% CI 1.59 to 4.32)]. CONCLUSION This study showed that high expression of CCR7 in HNSCC tumours was significantly associated with worse clinicopathological and survival outcomes, suggesting that CCR7 and its pathway could be potential therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
| | - Basel Elsayed
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Omar Kujan
- Oral Diagnostic and Surgical Sciences Division, UWA Dental School, the University of Western Australia, Perth, Australia
| | - Mohammed Imad Malki
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Alrumaihi F. The Multi-Functional Roles of CCR7 in Human Immunology and as a Promising Therapeutic Target for Cancer Therapeutics. Front Mol Biosci 2022; 9:834149. [PMID: 35874608 PMCID: PMC9298655 DOI: 10.3389/fmolb.2022.834149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
An important hallmark of the human immune system is to provide adaptive immunity against pathogens but tolerance toward self-antigens. The CC-chemokine receptor 7 (CCR7) provides a significant contribution in guiding cells to and within lymphoid organs and is important for acquiring immunity and tolerance. The CCR7 holds great importance in establishing thymic architecture and function and naïve and regulatory T-cell homing in the lymph nodes. Similarly, the receptor is a key regulator in cancer cell migration and the movement of dendritic cells. This makes the CCR7 an important receptor as a drug and prognostic marker. In this review, we discussed several biological roles of the CCR7 and its importance as a drug and prognostic marker.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Kader A, Kaufmann JO, Mangarova DB, Moeckel J, Brangsch J, Adams LC, Zhao J, Reimann C, Saatz J, Traub H, Buchholz R, Karst U, Hamm B, Makowski MR. Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI. Cancers (Basel) 2022; 14:cancers14122909. [PMID: 35740575 PMCID: PMC9221397 DOI: 10.3390/cancers14122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; σ = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; σ = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa.
Collapse
Affiliation(s)
- Avan Kader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Correspondence:
| | - Jan O. Kaufmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Division 1.5 Protein Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Dilyana B. Mangarova
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163 Berlin, Germany
| | - Jana Moeckel
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Julia Brangsch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Lisa C. Adams
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Jing Zhao
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Carolin Reimann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Jessica Saatz
- Division 1.1 Inorganic Trace Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany; (J.S.); (H.T.)
| | - Heike Traub
- Division 1.1 Inorganic Trace Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany; (J.S.); (H.T.)
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (R.B.); (U.K.)
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (R.B.); (U.K.)
| | - Bernd Hamm
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Marcus R. Makowski
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
5
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
6
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
7
|
Zhao W, Liu M, Zhang M, Wang Y, Zhang Y, Wang S, Zhang N. Effects of Inflammation on the Immune Microenvironment in Gastric Cancer. Front Oncol 2021; 11:690298. [PMID: 34367971 PMCID: PMC8343517 DOI: 10.3389/fonc.2021.690298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chronic inflammation and immune cell dysfunction in the tumor microenvironment are key factors in the development and progression of gastric tumors. However, inflammation-related genes associated with gastric cancer prognosis and their relationship with the expression of immune genes are not fully understood. METHOD In this study, we established an inflammatory response model score called "Riskscore", based on differentially expressed genes in gastric cancer. We used Survival and Survminer packages in R to analyze patient survival and prognosis in risk groups. The survival curve was plotted using the Kaplan-Meier method, and the log-rank test was used to assess statistical significance, and we performed the ROC analysis using the R language package to analyze the 1-, 3-, and 5-year survival of patients in the GEO and TCGA databases. Single-factor and multi-factor prognostic analyses were carried out for age, sex, T, N, M, and risk score. Pathway enrichment analysis indicated immune factor-related pathway enrichment in both patient groups. Next, we screened for important genes that are involved in immune cell regulation. Finally, we created a correlation curve to explore the correlation between Riskscore and the expression of these genes. RESULTS The prognosis was significantly different between high- and low-risk groups, and the survival rate and survival time of the high-risk group were lower than those of the low-risk group. we found that the pathways related to apoptosis, hypoxia, and immunity were most enriched in the risk groups. we found two common tumor-infiltrating immune cell types (i.e., follicular helper T cells and resting dendritic cells) between the two risk groups and identified 10 genes that regulate these cells. Additionally, we found that these 10 genes are positively associated with the two risk groups. CONCLUSION Finally, a risk model of the inflammatory response in gastric cancer was established, and the inflammation-related genes used to construct the model were found to be directly related to immune infiltration. This model can improve the gastric cancer prognosis prediction. Our findings contribute to the development of immunotherapy for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Weidan Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingqing Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yachen Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yingli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Shiji Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
9
|
Gan S, Pan Y, Mao J. miR-30a-GNG2 and miR-15b-ACSS2 Interaction Pairs May Be Potentially Crucial for Development of Abdominal Aortic Aneurysm by Influencing Inflammation. DNA Cell Biol 2019; 38:1540-1556. [PMID: 31730405 DOI: 10.1089/dna.2019.4994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shujie Gan
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqin Pan
- Department of Nursing, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieqi Mao
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Zhou C, Zhong X, Song Y, Shi J, Wu Z, Guo Z, Sun J, Wang Z. Prognostic Biomarkers for Gastric Cancer: An Umbrella Review of the Evidence. Front Oncol 2019; 9:1321. [PMID: 31850212 PMCID: PMC6895018 DOI: 10.3389/fonc.2019.01321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: Biomarkers are biological molecules entirely or partially participating in cancerous processes that function as measurable indicators of abnormal changes in the human body microenvironment. Aiming to provide an overview of associations between prognostic biomarkers and gastric cancer (GC), we performed this umbrella review analyzing currently available meta-analyses and grading the evidence depending on the credibility of their associations. Methods: A systematic literature search was conducted by two independent investigators of the PubMed, Embase, Web of Science, and Cochrane Databases to identify meta-analyses investigating associations between prognostic biomarkers and GC. The strength of evidence for prognostic biomarkers for GC were categorized into four grades: strong, highly suggestive, suggestive, and weak. Results: Among 120 associations between prognostic biomarkers and GC survival outcomes, only one association, namely the association between platelet count and GC OS, was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence. Four associations were considered suggestive and the remaining 108 associations were supported by weak or not suggestive evidence. Discussion: The association between platelet count and GC OS was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence, however, the results should be interpreted cautiously due to inadequate methodological quality as deemed by AMSTAR 2.0.
Collapse
Affiliation(s)
- Cen Zhou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Zhong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhexu Guo
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Highly expressed CCR7 predicts poor prognosis in locally advanced nasopharyngeal carcinoma. Ir J Med Sci 2019; 189:669-676. [PMID: 31758524 DOI: 10.1007/s11845-019-02141-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NC) is a malignant human tumor with a high incidence that occurs on the top and lateral wall of the nasopharynx. AIMS To investigate the clinical value of chemokine receptor 7 (CCR7) in locally advanced NC. METHODS We enrolled 114 patients with locally advanced NC admitted to our hospital in the observation group (OBG) and 100 normal healthy subjects who underwent physical examination in the control group (COG). The serum CCR7 expression levels in each group were measured using enzyme-linked immunosorbent assay and were compared between the groups. RESULTS None of the 114 patients or their family members were lost during follow-up. Thirty-five patients died within 3 years and 79 survived (survival rate: 69.29%). The serum CCR7 level was higher in the OBG than in the COG (P < 0.05). The receiver operating characteristic (ROC) curve showed that the area under the ROC curve (AUC) was 0.837 for diagnostic value for locally advanced NC and the AUC was 0.759 for predictive value for 3-year mortality. The CCR7 AUC for diagnosis of locally advanced NC was 0.837 and for prediction of mortality was 0.759. Univariate analysis revealed significant differences in smoking history, long-term consumption of pickled food, family history of NC, primary lesion staging, lymph node staging, distant metastasis, clinical pathological staging, and CCR7 between the two groups (P < 0.05). CONCLUSIONS CCR7 was valuable in the diagnosis of locally advanced NC, and highly expressed CCR7 was predictive of poor prognosis.
Collapse
|
12
|
Maolake A, Izumi K, Natsagdorj A, Iwamoto H, Kadomoto S, Makino T, Naito R, Shigehara K, Kadono Y, Hiratsuka K, Wufuer G, Nastiuk KL, Mizokami A. Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci 2018; 109:1524-1531. [PMID: 29575464 PMCID: PMC5980342 DOI: 10.1111/cas.13586] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the mechanism of lymph node metastasis, a poor prognostic sign for prostate cancer, and the further dissemination of the disease is important to develop novel treatment strategies. Recent studies have reported that C‐C chemokine receptor 7 (CCR7), whose ligand is CCL21, is abundantly expressed in lymph node metastasis and promotes cancer progression. Tumor necrosis factor‐α (TNF‐α) is chronically produced at low levels within the tumor microenvironment. The aim of this study was to determine whether TNF‐α promotes prostate cancer dissemination from metastatic lymph nodes through activation of the CCL21/CCR7 axis. First, human prostate cancer cells were determined to express both TNF‐α and CCR7. Second, low concentrations of TNF‐α were confirmed to induce CCR7 in prostate cancer cells through phosphorylation of ERK. Finally, CCL21 was found to promote the migration of prostate cancer cells through phosphorylation of the protein kinase p38. Our results suggest that TNF‐α leads to the induction of CCR7 expression and that the CCL21/CCR7 axis might increase the metastatic potential of prostate cancer cells in lymph node metastasis.
Collapse
Affiliation(s)
- Aerken Maolake
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Departments of Cancer Genetics and Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ariunbold Natsagdorj
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Renato Naito
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kaoru Hiratsuka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Guzailinuer Wufuer
- Hematology Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Kent L Nastiuk
- Departments of Cancer Genetics and Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
13
|
Zhu T, Hu X, Wei P, Shan G. Molecular background of the regional lymph node metastasis of gastric cancer. Oncol Lett 2018; 15:3409-3414. [PMID: 29556271 DOI: 10.3892/ol.2018.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest types of cancer in the world. Lymph node (LN) metastasis is a complex and malignant behavior of GC, involving a sequence of biological processes, including decreased adherence to adjacent cells, extracellular matrix (ECM) degradation and lymphatic channel permeation. LN metastasis is directly associated with the treatment response, local recurrence and long-term survival of patients with GC. Therefore, the molecular mechanisms of LN metastasis in GC development require further investigation. Recently, a large number of clinical studies have focused on the molecular mechanisms and biological markers of tumor invasion and metastasis. However, few articles have broadly summarized LN metastasis in GC, and the molecular mechanisms of LN metastasis are not yet fully understood. In the present review, the molecular mechanisms of LN metastasis in GC will be discussed, including the following aspects: Cell adhesion and movement, ECM degradation, new vessel formation, and molecular pattern differences between metastatic LNs and the primary tumor. This review may lead to a better understanding of LN metastasis in GC, and the identification of new diagnostic markers.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Guangzhi Shan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
14
|
Cheng X, Wu H, Jin ZJ, Ma D, Yuen S, Jing XQ, Shi MM, Shen BY, Peng CH, Zhao R, Qiu WH. Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci Rep 2017; 7:12362. [PMID: 28959024 PMCID: PMC5620046 DOI: 10.1038/s41598-017-10267-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Studies indicate that the chemokine receptor is responsible for poor prognosis of hepatocellular carcinoma (HCC) patients. In this study, we initially demonstrated that CCR4 is overexpressed in HCC specimens, and its elevation in HCC tissues positively correlates with tumor capsule breakthrough and vascular invasion. Although overexpression of CCR4 failed to influent proliferation of HCC cells in vitro apparently, the prominent acceleration on HCC tumor growth in vivo was remarkable. The underlying mechanism may be involved in neovascularization. Interestingly, different from effect on proliferation, CCR4 overexpression could trigger HCC metastasis both in vitro and in vivo also induced HCC cell epithelial-mesenchymal transition (EMT) as well. Then we identified matrix metalloproteinase 2 (MMP2) as a direct target of CCR4 which plays an important role in CCR4-mediated HCC cell invasion, which was up-regulated by ERK/AKT signaling. Positive correlation between CCR4 and MMP2 expression was also observed in HCC tissues. In conclusion, our study suggested that chemokine receptor CCR4 promotes HCC malignancy and facilitated HCC cell metastases via ERK/AKT/MMP2 pathway. These findings suggest that CCR4 may be a potential new diagnostic and prognostic marker in HCC, and targeting CCR4 may be a potential therapeutic option for blocking HCC metastasis.
Collapse
Affiliation(s)
- Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of General Surgery, Ruijin North Hospital Shanghai Jiaotong University School of Medicine, Shanghai, 201800, China
| | - Huo Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhi-Jian Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ding Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Stanley Yuen
- Biology chemistry major, University At Albany, New York, United States
| | - Xiao-Qian Jing
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min-Min Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng-Hong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery, Ruijin North Hospital Shanghai Jiaotong University School of Medicine, Shanghai, 201800, China.
| | - Wei-Hua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Xia Y, Liu L, Xiong Y, Bai Q, Wang J, Xi W, Qu Y, Xu J, Guo J. Prognostic value of CC-chemokine receptor seven expression in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitor. BMC Cancer 2017; 17:70. [PMID: 28114889 PMCID: PMC5259971 DOI: 10.1186/s12885-017-3065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/03/2023] Open
Abstract
Background CC-chemokine receptor seven (CCR7), a G-protein coupled receptor normally facilitating immune cells lymphatic homing, has recently been identified on several cancer cells in promoting invasion and lymphatic specific metastasis by mimicking normal leukocytes. As tyrosine kinase inhibitors for metastatic renal cell carcinoma (mRCC) mostly emphasized on vascular inhibition, whether the CCR7 expressing tumor cells with potential lymphatic invasion function could have an impact on mRCC patient’s drug response and survival, was unknown. Methods In this study, in a clinical aspect, we retrospectively investigated the prognostic and predictive impact of tumoral CCR7 expression in 110 mRCC patients treated with sunitinib and sorafenib, and its correlation with pre- or post-administration lymphatic involvement. Immunohistochemistry on tissue microarrays were conducted for CCR7 expression evaluation. Results Kaplan-Meier and univariate analyses suggested high tumoral CCR7 expression as an adverse prognosticator for mRCC patients’ overall survival (OS), which was further confirmed in the multivariate analyses (P = 0.002, P = 0.003 for bootstrap). This molecule could be combined with Heng’s risk model for better patient OS prediction. High tumoral CCR7 expression was also an independent dismal predictor for patients’ progression free survival (PFS) (P = 0.010, P = 0.013 for bootstrap), and correlated with poorer best drug response. Moreover, a possible correlation of CCR7 high expression and patients’ baseline and post-administration lymph node metastasis was found. Conclusions High tumoral CCR7 expression correlated with potential lymphatic involvement and poor prognosis of mRCC patients treated with tyrosine kinase inhibitors. Further external validations and basic researches were needed to confirm these results. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Mailbox 103, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
16
|
Atretkhany KSN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 2016; 168:98-112. [PMID: 27613100 DOI: 10.1016/j.pharmthera.2016.09.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relationship between inflammation and cancer is now well-established and represents a paradigm that our immune response does not necessarily serves solely to protect us from infections and cancer. Many specific mechanisms that link chronic inflammation to cancer promotion and metastasis have been uncovered in the recent years. Here we are focusing on the effects that tumors may exert on inflammatory cascades, tuning the immune system ability to cause tumor promotion or regression. In particular, we discuss the contributions of chemokines, cytokines and exosomes to the processes such as induction of inflammation and tumorigenesis. Overall, tumor-elicited inflammation is a key driver of tumor progression and an essential component of tumor microenvironment.
Collapse
Affiliation(s)
- K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - S I Grivennikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Fox Chase Cancer Center, Cancer Prevention and Control Program, Philadelphia, PA, USA.
| | - D V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
17
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
18
|
Barmore AJ, Castex SM, Gouletas BA, Griffith AJ, Metz SW, Muelder NG, Populin MJ, Sackett DM, Schuster AM, Veldkamp CT. Transferring the C-terminus of the chemokine CCL21 to CCL19 confers enhanced heparin binding. Biochem Biophys Res Commun 2016; 477:602-606. [PMID: 27338641 DOI: 10.1016/j.bbrc.2016.06.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 12/29/2022]
Abstract
Chemokines direct the migration of cells during various immune processes and are involved in many disease states. For example, CCL19 and CCL21, through activation of the CCR7 receptor, recruit dendritic cells and naïve T-cells to the secondary lymphoid organs aiding in balancing immune response and tolerance. However, CCL19 and CCL21 can also direct the metastasis of CCR7 expressing cancers. Chemokine binding to glycosaminoglycans, such as heparin, is as important to chemokine function as receptor activation. CCL21 is unique in that it contains an extended C-terminus not found in other chemokines like CCL19. Deletion of this extended C-terminus reduces CCL21's affinity for heparin and transferring the CCL21 C-terminus to CCL19 enhances heparin binding mainly through non-specific, electrostatic interactions.
Collapse
Affiliation(s)
- Austin J Barmore
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Sally M Castex
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Brittany A Gouletas
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Alex J Griffith
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Slater W Metz
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Nicolas G Muelder
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Michael J Populin
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - David M Sackett
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Abigail M Schuster
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Christopher T Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA; Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|