1
|
Cammarota A, Woodford R, Smyth EC. Targeting HER2 in Gastroesophageal Cancer: A New Appetite for an Old Plight. Drugs 2025; 85:361-383. [PMID: 39843758 DOI: 10.1007/s40265-024-02132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
The incidence of gastroesophageal cancers is rising, driven, in part, by an increasing burden of risk factors of obesity and gastroesophageal reflux. Despite efforts to address these risk factors, and a growing interest in methods of population screening, the bulk of these tumours are unresectable at diagnosis. In this setting, effective systemic treatments are paramount to improve survival and quality of life. Early and accurate identification of oncogenic drivers, such as human epidermal growth factor receptor 2 (HER2), present in 5-30% of gastroesophageal adenocarcinomas (GEAs), is integral to guide choice of therapies due to the clear predictive implications that arise from overexpression of this receptor. After trastuzumab, the first anti-HER2 agent with approved use in HER2-positive GEA, the addition of pembrolizumab to first-line trastuzumab-chemotherapy and trastuzumab deruxtecan in the refractory space have more recently changed practice. Yet, the response to these agents has been vastly different across patients with HER2-positive disease, underpinning the need for reliable biomarkers of response. Emergent data have suggested that levels of HER2 expression on tissue or liquid biopsies may predict response to first-generation HER2 therapies while HER2 heterogeneity, receptor changes, co-occurring molecular alterations and oncogenic genomic and metabolic reprogramming may be implicated in resistance. A robust knowledge of the mechanisms of resistance and response to HER2-directed therapies is necessary to inform novel strategies of HER2-targeting and guide choice combinations with other biomarker-directed therapies, to improve outcomes from a new generation of clinical trials in HER2-positive GEA. Understanding and close examination of previous failures in this space form an important part of this assessment, as does correlative biomarker and translational work pertaining to the role of HER2 and dynamic changes that result through treatment exposure. In this review, we aim to provide an overview of strategies for HER2 targeting, summarising both the successes and disappointments in this therapeutic landscape and discuss existing challenges and future perspectives on development in this highly morbid tumour type.
Collapse
Affiliation(s)
- Antonella Cammarota
- Sarah Cannon Research Institute UK, 93 Harley St, London, UK
- Department of Medical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan, Italy
| | - Rachel Woodford
- Sarah Cannon Research Institute UK, 93 Harley St, London, UK
- National Health and Medical Research Council Clinical Trials Centre (NHMRC CTC), University of Sydney, Parramatta Road, Camperdown, Australia
| | - Elizabeth C Smyth
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
2
|
Kleo K, Jovanovic VM, Arndold A, Lehmann A, Lammert H, Berg E, Harloff H, Treese C, Hummel M, Daum S. Response prediction in patients with gastric and esophagogastric adenocarcinoma under neoadjuvant chemotherapy using targeted gene expression analysis and next-generation sequencing in pre-therapeutic biopsies. J Cancer Res Clin Oncol 2023; 149:1049-1061. [PMID: 35246724 PMCID: PMC9984352 DOI: 10.1007/s00432-022-03944-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Perioperative chemo-(radio-) therapy is the accepted standard in European patients with locally advanced adenocarcinoma of the esophagogastric junction or stomach (AEG/AS). However, 30-85% of patients do not respond to this treatment. The aim of our study was the identification of predictive biomarkers in pre-therapeutic endoscopic tumor biopsies from patients with histopathologic response (Becker-1) versus non-response (Becker-2/3) to preoperative chemotherapy. METHODS Formalin-fixed paraffin-embedded biopsies from 36 Caucasian patients (Becker-1 n = 11, Becker-2 n = 7, Becker-3 n = 18) with AEG/AS, taken prior to neoadjuvant chemotherapy were selected. For RNA expression analysis, we employed the NanoString nCounter System. To identify genomic alterations like single nucleotide variants (SNV), copy number variation (CNV) and fusion events, we used Illumina TST170 gene panel. For HER2 and FGFR2 protein expression, immunostaining was performed. Furthermore, we analyzed the microsatellite instability (MSI) and Epstein-Barr virus (EBV) infection status by EBER in situ hybridization. RESULTS Heat map and principal component analyses showed no clustering by means of gene expression according to regression grade. Concerning two recently proposed predictive markers, our data showed equal distribution for MSI (Becker-1: 2; Becker-2: 1; Becker-3: 3; out of 29 tested) and EBV infection was rare (1/32). We could not reveal discriminating target genes concerning SNV, but found a higher mutational burden in non-responders versus responders and fusion (in 6/14) and CNV events (in 5/14) exclusively in Becker-3. CONCLUSIONS Although we could not identify discriminating target genes, our data suggest that molecular alterations are in general more prevalent in patients with AEG/AS belonging to the non-responding Becker group 3.
Collapse
Affiliation(s)
- Karsten Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Vladimir M Jovanovic
- Institute of Informatics, Bioinformatics Solution Center, Freie Universität (FU), Takustr. 9, 14195, Berlin, Germany
| | - Alexander Arndold
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Annika Lehmann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Erika Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Hannah Harloff
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Christoph Treese
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
- Experimental and Clinical Research Center, Charité University Medicine, Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Chariteplatz 1, 10117, Berlin, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Severin Daum
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Pectasides E, Stachler MD, Derks S, Liu Y, Maron S, Islam M, Alpert L, Kwak H, Kindler H, Polite B, Sharma MR, Allen K, O'Day E, Lomnicki S, Maranto M, Kanteti R, Fitzpatrick C, Weber C, Setia N, Xiao SY, Hart J, Nagy RJ, Kim KM, Choi MG, Min BH, Nason KS, O'Keefe L, Watanabe M, Baba H, Lanman R, Agoston AT, Oh DJ, Dunford A, Thorner AR, Ducar MD, Wollison BM, Coleman HA, Ji Y, Posner MC, Roggin K, Turaga K, Chang P, Hogarth K, Siddiqui U, Gelrud A, Ha G, Freeman SS, Rhoades J, Reed S, Gydush G, Rotem D, Davison J, Imamura Y, Adalsteinsson V, Lee J, Bass AJ, Catenacci DV. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov 2017; 8:37-48. [PMID: 28978556 DOI: 10.1158/2159-8290.cd-17-0395] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/21/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy.Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Janjigian et al., p. 49This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Eirini Pectasides
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Matthew D Stachler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah Derks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Yang Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Steven Maron
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Mirazul Islam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Lindsay Alpert
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Heewon Kwak
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Hedy Kindler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Blase Polite
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Manish R Sharma
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Kenisha Allen
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Emily O'Day
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Samantha Lomnicki
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Melissa Maranto
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Rajani Kanteti
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Carrie Fitzpatrick
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Christopher Weber
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Namrata Setia
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - John Hart
- Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Gew Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Department of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Katie S Nason
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lea O'Keefe
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Masayuki Watanabe
- Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rick Lanman
- Guardant Health, Inc., Redwood City, California
| | - Agoston T Agoston
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Oh
- University of New England College of Osteopathic Medicine, Biddeford, Maine
| | - Andrew Dunford
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Aaron R Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew D Ducar
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce M Wollison
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haley A Coleman
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Mitchell C Posner
- Department of Surgery, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Kevin Roggin
- Department of Surgery, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Kiran Turaga
- Department of Surgery, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Paul Chang
- Department of Radiology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Kyle Hogarth
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Uzma Siddiqui
- Department of Medicine, Section of Gastroenterology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Andres Gelrud
- Department of Medicine, Section of Gastroenterology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Gavin Ha
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | | | - Justin Rhoades
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Sarah Reed
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Greg Gydush
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Denisse Rotem
- Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Jon Davison
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yu Imamura
- Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Daniel V Catenacci
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois.
| |
Collapse
|