1
|
Hu J, Hu Z, Xia J, Chen Y, Cordato D, Cheng Q, Wang J. Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury. Animal Model Exp Med 2025; 8:389-404. [PMID: 39908171 PMCID: PMC11904106 DOI: 10.1002/ame2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is an important pathophysiological condition of ischemic stroke that involves a variety of physiological and pathological cell death pathways, including autophagy, apoptosis, necroptosis, and phagoptosis, among which autophagy is the most studied. We have reviewed studies published in the past 5 years regarding the association between autophagy and cerebral I/R injury. To the best of our knowledge, this is the first review article summarizing potential candidates targeting autophagic pathways in the treatment of I/R injury post ischemic stroke. The findings of this review may help to better understand the pathogenesis and mechanisms of I/R events and bridge the gap between basic and translational research that may lead to the development of novel therapeutic approaches for I/R injury.
Collapse
Affiliation(s)
- Jun Hu
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Zekai Hu
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Jiayi Xia
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Yeping Chen
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Dennis Cordato
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Qi Cheng
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Jie Wang
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| |
Collapse
|
2
|
Hayeeawaema F, Sermwittayawong N, Tipbunjong C, Huipao N, Muangnil P, Khuituan P. Live and heat-killed Leuconostoc mesenteroides counteract the gastrointestinal dysfunction in chronic kidney disease mice through intestinal environment modulation. PLoS One 2025; 20:e0318827. [PMID: 39992980 PMCID: PMC12005673 DOI: 10.1371/journal.pone.0318827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics are well-known therapeutic agents for managing constipation and have been used to improve chronic kidney disease (CKD) progression. However, heat-killed probiotics on CKD remain inadequately explored. This study aimed to evaluate the probiotic potential of lactic acid bacteria derived from natural sources and to investigate the effects of both live and heat-killed Leuconostoc mesenteroides (Ln.m) on renal and gastrointestinal functions in CKD mice. Ln.m was selected from acid and bile salt intolerance tests, non-hemolytic activity, and antibiotic sensitivity. CKD mice demonstrated significantly elevated blood urea nitrogen (BUN) and creatinine levels compared to control mice (p < 0.001 and p < 0.01). Treatment with live and heat-killed Ln.m significantly reduced BUN and creatinine levels in CKD mice (p < 0.01 and p < 0.05). Additionally, kidney damage observed in CKD mice compared to control mice, including glomerular necrosis, tubular dilatation, inflammation, and fibrosis, was significantly alleviated following live and heat-killed Ln.m treatments. CKD-induced gastrointestinal dysfunction was characterized by an imbalance in Firmicutes/Bacteroidota populations, increased colonic uremic toxin (p < 0.01), reduced fecal short-chain fatty acids (SCFAs) (p < 0.05), and constipation. Treatment with live and heat-killed Ln.m restored gut microbiota, decreased uremic toxin (p < 0.001), increased SCFAs (p < 0.05), and alleviated constipation. In summary, both live and heat-killed Ln.m effectively alleviated gastrointestinal dysfunction and renal damage in CKD mice, primarily through modulation of the intestinal environment. These findings highlight the therapeutic potential of live and heat-killed Ln.m as the gastrointestinal dysfunction treatment in CKD.
Collapse
Affiliation(s)
- Fittree Hayeeawaema
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Paradorn Muangnil
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
3
|
Evangelista AG, Corrêa JAF, Pinto ACMS, Gonçalves FDR, Luciano FB. Recent advances in the use of bacterial probiotics in animal production. Anim Health Res Rev 2023; 24:41-53. [PMID: 38073081 DOI: 10.1017/s1466252323000063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Animal husbandry is increasingly under pressure to meet world food demand. Thus, strategies are sought to ensure this productivity increment. The objective of this review was to gather advances in the use of bacterial probiotics in animal production. Lactobacilli correspond to the most used bacterial group, with several beneficial effects already reported and described, as well as the Enterococcus and Pediococcus genera - being the latter expressively used in aquaculture. Research on the Bifidobacterium genus is mostly focused on human health, which demonstrates great effects on blood biochemical parameters. Such results sustain the possibility of expanding its use in veterinary medicine. Other groups commonly assessed for human medicine but with prospective expansion to animal health are the genera Leuconostoc and Streptococcus, which have been demonstrating interesting effects on the prevention of viral diseases, and in dentistry, respectively. Although bacteria from the genera Bacillus and Lactococcus also have great potential for use in animal production, a complete characterization of the candidate strain must be previously made, due to the existence of pathogenic and/or spoilage variants. It is noteworthy that a growing number of studies have investigated the genus Propionibacterium, but still in very early stages. However, the hitherto excellent results endorse its application. In this way, in addition to the fact that bacterial probiotics represent a promising approach to promote productivity increase in animal production, the application of other strains than the traditionally employed genera may allow the exploitation of novel mechanisms and enlighten unexplored possibilities.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Anne Caroline Marques Schoch Pinto
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Francieli Dalvana Ribeiro Gonçalves
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| |
Collapse
|
4
|
Lee M, Park J, Kim OK, Kim D, Han MJ, Kim SH, Kim TH, Lee J. Lactobacillus reuteri NCIMB 30242 (LRC) Inhibits Cholesterol Synthesis and Stimulates Cholesterol Excretion in Animal and Cell Models. J Med Food 2023; 26:529-539. [PMID: 37594559 DOI: 10.1089/jmf.2022.k.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
In this study, we evaluated the effects of Lactobacillus reuteri NCIMB (LRC™) supplementation on hypercholesterolemia by researching its effects on cellular cholesterol metabolism in hypercholesterolemic rats (KHGASP-22-170) and HepG2 cell line. Rats were separated into six groups after adaptation and were then fed a normal control (NC), a high-cholesterol diet (HC), or a HC supplemented with simvastatin 15 mg/kg body weight (positive control [PC]), LRC 1 × 109 colony-forming units (CFU)/rat/day, LRC 4 × 109 CFU/rat/day, or LRC 1 × 1010 CFU/rat/day (1 × 109, 4 × 109, or 1 × 1010). The rats were dissected to study the effects of LRC on cholesterol metabolism and intestinal excretion at the end of experimental period. We discovered that LRC mainly participated in the restraint of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the uptake of low-density lipoprotein (LDL) cholesterol into tissues, partially in the transport of cholesteryl esters into high density lipoprotein for maturation, and intestinal excretion of cholesterol. These results are supported by the expression of transcription factors and enzymes such as HMG-CoA reductase, SREBP2, CYP7A1, CETP, and LCAT in both messenger RNA (mRNA) and protein levels in serum and hepatic tissue. Furthermore, the LRC treatment in HepG2 significantly reduced the mRNA expression of HMG-CoA reductase, SREBP2, and CEPT and significantly increased the mRNA expression of LDL-receptor, LCAT, and CYP7A1 at all doses. Hence, we suggest that LRC supplementation could alleviate the serum cholesterol level by inhibiting the intracellular cholesterol synthesis, and augmenting excretion of intestinal cholesterol.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | | | | | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
5
|
Cha J, Kim YB, Park SE, Lee SH, Roh SW, Son HS, Whon TW. Does kimchi deserve the status of a probiotic food? Crit Rev Food Sci Nutr 2023; 64:6512-6525. [PMID: 36718547 DOI: 10.1080/10408398.2023.2170319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kimchi is a traditional fermented vegetable side dish in Korea and has become a global health food. Kimchi undergoes spontaneous fermentation, mainly by lactic acid bacteria (LAB) originating from its raw ingredients. Numerous LAB, including the genera Leuconostoc, Weissella, and Lactobacillus, participate in kimchi fermentation, reaching approximately 9-10 log colony forming units per gram or milliliter of food. The several health benefits of LAB (e.g., antioxidant and anti-inflammatory properties) combined with their probiotic potential in complex diseases including obesity, cancer, atopic dermatitis, and immunomodulatory effect have generated an interest in the health effects of LAB present in kimchi. In order to estimate the potential of kimchi as a probiotic food, we comprehensively surveyed the health functionalities of kimchi and kimchi LAB, and their effects on human gut environment, highlighting the probiotics function.
Collapse
Affiliation(s)
- Jeongmin Cha
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Sankova MV, Nikolenko VN, Sankov SV, Sinelnikov MY. SARS-CoV-2 and microbiome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:279-337. [DOI: 10.1016/b978-0-443-18566-3.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Silva Tomoto ALD, de Assis TM, Filho FCMF, Silva Araujo TM, Vilver RM, Santoyo MC, Gomes SD. Production of Bacteriocins by Leuconostoc mesenteroides Using Wastewater from the Cassava Starch Industry as a Growing Medium. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Tatiane Martins de Assis
- Department of Agricultural Engineering, State University of Western Paraná (UNIOESTE), Cascavel, Brazil
| | | | - Thays Majara Silva Araujo
- Department of Agricultural Engineering, State University of Western Paraná (UNIOESTE), Cascavel, Brazil
| | - Raquel Minuceli Vilver
- Department of Agricultural Engineering, State University of Western Paraná (UNIOESTE), Cascavel, Brazil
| | | | - Simone Damasceno Gomes
- Department of Agricultural Engineering, State University of Western Paraná (UNIOESTE), Cascavel, Brazil
| |
Collapse
|
8
|
Leuconostoc mesenteroides LVBH107 Antibacterial Activity against Porphyromonas gingivalis and Anti-Inflammatory Activity against P. gingivalis Lipopolysaccharide-Stimulated RAW 264.7 Cells. Nutrients 2022; 14:nu14132584. [PMID: 35807773 PMCID: PMC9268581 DOI: 10.3390/nu14132584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Probiotics, active microorganisms benefiting human health, currently serve as nutritional supplements and clinical treatments. Periodontitis, a chronic infectious oral disease caused by Porphyromonas gingivalis (P. gingivalis), activates the host immune response to release numerous proinflammatory cytokines. Here, we aimed to clarify Leuconostoc mesenterica (L. mesenteroides) LVBH107 probiotic effects based on the inhibition of P.gingivalis activities while also evaluating the effectiveness of an in vitro P.gingivalis lipopolysaccharide-stimulated RAW 264.7 cell-based inflammation mode. L. mesenteroides LVBH107 survived at acid, bile salts, lysozyme, and hydrogen peroxide conditions, auto-aggregated and co-aggregated with P. gingivalis, exhibited strong hydrophobicity and electrostatic action, and strongly adhered to gingival epithelial and HT-29 cells (thus exhibiting oral tissue adherence and colonization abilities). Moreover, L.mesenteroides LVBH107 exhibited sensitivity to antibiotics erythromycin, doxycycline, minocycline, ampicillin, and others (thus indicating it lacked antibiotic resistance plasmids), effectively inhibited P.gingivalis biofilm formation and inflammation (in vitro inflammation model), reduced the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and inflammatory mediators (NO and PGE2), and decreased the expression levels of inflammation related genes. Thus, L.mesenterica LVBH107 holds promise as a probiotic that can inhibit P.gingivalis biofilm formation and exert anti-inflammatory activity to maintain oral health.
Collapse
|
9
|
Tjandrawinata RR, Kartawijaya M, Hartanti AW. In vitro Evaluation of the Anti-hypercholesterolemic Effect of Lactobacillus Isolates From Various Sources. Front Microbiol 2022; 13:825251. [PMID: 35295304 PMCID: PMC8920493 DOI: 10.3389/fmicb.2022.825251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 01/28/2023] Open
Abstract
The anti-hypercholesterolemic effect of 11 Lactobacillus isolates was investigated in vitro by measuring remaining cholesterol in growth media, growth ability in media supplemented with cholesterol, and BSH activity. Among the selected isolates, DLBSH104, DLBSH122, and DLBSK207 have demonstrated outstanding potential as cholesterol-lowering cultures. The three isolates showed high cholesterol removal by growing cells, whereas resting and dead cells showed less cholesterol removal. Furthermore, visualization of those isolates in growing and non-growing states by SEM showed the ability of DLBSH104 to attach cholesterol to their cell surface. In contrast, alteration of DLBSH122 and DLBSK207 cells did not involve surface attachment of cholesterol. Thus, the isolates’ ability to remove cholesterol is mainly attributed to the cells’ metabolically active state that assimilates and incorporates cholesterol into the cell membrane as reflected by a significantly higher cholesterol removal in a growing state than a non-growing state. Only in DLBSH104 did cholesterol removal also involve attachment on the cell surface. Moreover, DLBSH104 has beneficially affected the host cell by a significant reduction of NPC1L1 mRNA levels that are responsible for intestinal cholesterol absorption. In hepatic cells, cell-free supernatant (CFS) from DLBSH104 and DLBSK207 were able to reduce LDLR and HMGCR mRNA at the transcription level. To sum up, L. helveticus DLBSH104 and L. plantarum DLBSK207 are confirmed as isolates with an anti-hypercholesterolemic effect.
Collapse
Affiliation(s)
- Raymond Rubianto Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Cikarang, Indonesia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- *Correspondence: Raymond Rubianto Tjandrawinata,
| | - Medicia Kartawijaya
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Cikarang, Indonesia
| | | |
Collapse
|
10
|
Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr 2021; 9:6882-6891. [PMID: 34925816 PMCID: PMC8645708 DOI: 10.1002/fsn3.2600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023] Open
Abstract
Hypercholesterolemia is the main cause of cardiovascular disease worldwide, and the regulation of cholesterol homeostasis is essential for human health. Lactobacillus is present in large quantities in the human intestine. As the normal flora in the gut, lactobacillus plays an important role in regulating metabolism in the human body. Lactobacillus can regulate the cholesterol content by regulating the expression of genes involved in cholesterol synthesis, metabolism, and absorption. This article reviews the biological effects and mechanisms of lactobacillus that mediate the expression of NPC1L1, CYP7A1, ABCG5, ABCG8, and other genes to inhibit cholesterol absorption, and discusses the mechanism of reducing cholesterol by lactobacillus in cells in vitro, to provide a theoretical basis for the development and utilization of lactobacillus resources.
Collapse
Affiliation(s)
- Kaihui Cao
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Kaiping Zhang
- Department of Cooking & Food ProcessingInner Mongolia Business and Trade Vocational CollegeHohhotChina
| | - Muran Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Junjie Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Jianjun Tian
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Ye Jin
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
11
|
Huang YH, Chen YH, Chen JH, Hsu PS, Wu TH, Lin CF, Peng CC, Wu MC. A potential probiotic Leuconostoc mesenteroides TBE-8 for honey bee. Sci Rep 2021; 11:18466. [PMID: 34531482 PMCID: PMC8446051 DOI: 10.1038/s41598-021-97950-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
An isolated bacterium TBE-8, was identified as Leuconostoc mesenteroides according to the sequences of 16S rDNA and the 16S-23S rDNA intergenic spacer region. The probiotic properties of the L. mesenteroides TBE-8 strain were characterized and revealed that TBE-8 could utilize various carbohydrates, exhibited high tolerance to sucrose's osmotic pressure and acidic conditions, and could mitigate the impact of the bee pathogen Paenibacillus larvae. In addition, we found that the TBE-8 broth increased the expression of the nutrition-related genes major royal jelly protein 1 and vitellogenin in bees by approximately 1400- and 20-fold, respectively. The expression of genes encoding two antibacterial peptides, hymenoptaecin and apidaecin, in the bee abdomen was significantly increased by 17- and 7-fold in bees fed with the TBE-8 fermented broth. Furthermore, we fed four-frame bee colonies with 50% sucrose syrup containing TBE-8 and can detect the presence of approximately 2 × 106 16S rDNA copies of TBE-8 in the guts of all bees in 24 h, and the retention of TBE-8 in the bee gut for at least 5 days. These findings indicate that the L. mesenteroides TBE-8 has high potential as a bee probiotic and could enhance the health of bee colonies.
Collapse
Affiliation(s)
- Yu-Han Huang
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jui-Hung Chen
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Shou Hsu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli, Taiwan
| | - Tzu-Hsien Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chi-Chung Peng
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
12
|
Kaushal G, Singh SP. Comparative genome analysis provides shreds of molecular evidence for reclassification of Leuconostoc mesenteroides MTCC 10508 as a strain of Leu. suionicum. Genomics 2020; 112:4023-4031. [DOI: 10.1016/j.ygeno.2020.06.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
|
13
|
Lim P, Loke C, Ho Y, Tan H. Cholesterol homeostasis associated with probiotic supplementation
in vivo. J Appl Microbiol 2020; 129:1374-1388. [DOI: 10.1111/jam.14678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Affiliation(s)
- P.S. Lim
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| | - C.F. Loke
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| | - Y.W. Ho
- Institute of Biosience Universiti Putra Malaysia Selangor Malaysia
| | - H.Y. Tan
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| |
Collapse
|
14
|
Mercha I, Lakram N, Kabbour MR, Bouksaim M, Zkhiri F, El Maadoudi EH. Probiotic and technological features of Enterococcus and Weissella isolates from camel milk characterised by an Argane feeding regimen. Arch Microbiol 2020; 202:2207-2219. [PMID: 32524178 DOI: 10.1007/s00203-020-01944-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Abstract
The objectives of this study were to isolate lactic acid bacteria (LAB) from a raw Moroccan camel milk collected after the incorporation of a specific Argane by-products diet, and to investigate their technological properties as well as their probiotic features. The molecular identification of the isolates indicated that they belong to Weissella confusa, Weissella cibaria or Enterococcus durans species. Our results revealed that the tested isolates have a fast acidifying ability (values ranging between 0.045 ± 0.01 to 0.93 ± 0.01 after only 4 h incubation), important proteolysis, autolysis, lipolytic activities and an important diacetyl and exopolysaccharides production. All these isolates demonstrated a high tolerance to gastrointestinal conditions, namely to gastric simulated juice (survival rate ranged between 75.05 ± 7.88 and 85.55 ± 1.77%) and to bile salts (survival rate between 42.79 ± 1.11 and 82.75 ± 1.01%). The autoaggregation, hydrophobicity and antioxidant activity mean values of the isolates were 13.26-41.16%, 13.23-54.47% and 47.57-63.31%, respectively. Importantly, LAB cultures exhibited antibacterial activity against Gram-negative and Gram-positive pathogenic bacteria and none of the tested isolates presented antibiotic resistance, haemolytic or DNase activities. This study revealed interesting properties for LAB isolated and supported their utilization as autochthone starters for camel milk fermentation that represent a challenge process. These results presented as well the probiotic potential for a possible human consumption.
Collapse
Affiliation(s)
- Ikram Mercha
- Laboratory of Virology, Microbiology and Quality, Biotechnology/Eco-Toxicology and Biodiversity, University Hassan II Casablanca, Faculty of Science and Techniques of Mohammedia, PB 146, 20650, Mohammedia, Morocco. .,RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, PB 6570, 10101, Rabat, Morocco.
| | - Nazha Lakram
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, PB 6570, 10101, Rabat, Morocco
| | - Mohammed Rachid Kabbour
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, PB 6570, 10101, Rabat, Morocco
| | - Mohammed Bouksaim
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, PB 6570, 10101, Rabat, Morocco
| | - Fouzia Zkhiri
- Laboratory of Virology, Microbiology and Quality, Biotechnology/Eco-Toxicology and Biodiversity, University Hassan II Casablanca, Faculty of Science and Techniques of Mohammedia, PB 146, 20650, Mohammedia, Morocco
| | - El Haj El Maadoudi
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, PB 6570, 10101, Rabat, Morocco
| |
Collapse
|
15
|
Liang X, Lv Y, Zhang Z, Yi H, Liu T, Li R, Yu Z, Zhang L. Study on intestinal survival and cholesterol metabolism of probiotics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|