1
|
Dong Y, Zhu J, Pan N. Recent advances in rapid detection of Helicobacter pylori by lateral flow assay. Arch Microbiol 2025; 207:35. [PMID: 39820420 DOI: 10.1007/s00203-025-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H. pylori infection in gastric biopsies. However, this approach is invasive, time-consuming and expensive. On the other hand, serology-based methods can be considered as a non-invasive approach to detecting H. pylori infection. The LFA (lateral flow assay) serves as a rapid point-of-care diagnostic tool. This paper-based platform facilitates the detection and quantification of analytes within human fluids such as blood, serum and urine. Due to ease of production, rapid results, and low costs, LFAs have a wide application in clinical laboratories and hospitals. In this comprehensive review, we examined LFA-based approaches for detection of H. pylori infection from human fluids and compare them with other high-sensitivity methods like ELISA (Enzyme-linked immunosorbent assay). Furthermore, we reviewed methods to elevate LFA sensitivity during H. pylori infection including, CRISPR/Cas system and isothermal amplification approaches. The development and optimization of novel labeling agents such as nanozyme to enhance the performance of LFA devices in detecting H. pylori were reviewed. These innovations aim to improve signal amplification and stability, thereby increasing the diagnostic accuracy of LFA devices. A combination of advances in LFA technology and molecular insight could significantly improve diagnostic accuracy, resulting in a significant improvement in clinical and remote diagnostic accuracy.
Collapse
Affiliation(s)
- Yanjin Dong
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China
| | - Jie Zhu
- Department of Laboratory Medicine, Shandong First Medical University Affiliated Provincial Hospital (East Hospital), No. 9677, Jingshi Road, Lixia District, Jinan, 250098, Shandong, China
| | - Ning Pan
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
2
|
Moreno Trigos Y, Tortajada-Girbés M, Simó-Jordá R, Hernández Pérez M, Hortelano I, García-Ferrús M, Ferrús Pérez MA. Use of Deep-Amplicon Sequencing (DAS), Real-Time PCR and In Situ Hybridization to Detect H. pylori and Other Pathogenic Helicobacter Species in Feces from Children. Diagnostics (Basel) 2024; 14:1216. [PMID: 38928632 PMCID: PMC11203337 DOI: 10.3390/diagnostics14121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Detecting Helicobacter pylori in fecal samples is easier and more comfortable than invasive techniques, especially in children. Thus, the objective of the present work was to detect H. pylori in feces from children by molecular methods as an alternative for diagnostic and epidemiological studies. METHODS Forty-five fecal samples were taken from pediatric patients who presented symptoms compatible with H. pylori infection. HpSA test, culture, real-time quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), direct viable count associated with FISH (DVC-FISH), and Illumina-based deep-amplicon sequencing (DAS) were applied. RESULTS No H. pylori colonies were isolated from the samples. qPCR analysis detected H. pylori in the feces of 24.4% of the patients. In comparison, DVC-FISH analysis showed the presence of viable H. pylori cells in 53.3% of the samples, 37% of which carried 23S rRNA mutations that confer resistance to clarithromycin. After DAS, H. pylori-specific 16S rDNA sequences were detected in 26 samples. In addition, DNA from H. hepaticus was identified in 10 samples, and H. pullorum DNA was detected in one sample. CONCLUSION The results of this study show the presence of H. pylori, H. hepaticus, and H. pullorum in children's stools, demonstrating the coexistence of more than one Helicobacter species in the same patient. The DVC-FISH method showed the presence of viable, potentially infective H. pylori cells in a high percentage of the children's stools. These results support the idea that fecal-oral transmission is probably a common route for H. pylori and suggest possible fecal-oral transmission of other pathogenic Helicobacter species.
Collapse
Affiliation(s)
- Yolanda Moreno Trigos
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain; (Y.M.T.); (I.H.)
| | - Miguel Tortajada-Girbés
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Department of Pediatrics, La Fe Polytechnique and University Hospital, 46026 Valencia, Spain
- Foundation for Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain
| | - Raquel Simó-Jordá
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Foundation for Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain
- Department of Pediatrics, University Hospital Doctor Peset, 46017 Valencia, Spain
| | - Manuel Hernández Pérez
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.H.P.); (M.A.F.P.)
| | - Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain; (Y.M.T.); (I.H.)
| | - Miguel García-Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.H.P.); (M.A.F.P.)
| | - María Antonia Ferrús Pérez
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.H.P.); (M.A.F.P.)
| |
Collapse
|
3
|
Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, Almuzaini AM, Rawway M, Alfadhel A, Draz A, Abu-Okail A. Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics (Basel) 2023; 12:191. [PMID: 36830102 PMCID: PMC9952126 DOI: 10.3390/antibiotics12020191] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| | - Abdulmajeed Alfadhel
- Performance Excellence and Quality, Qassim Health Cluster, Buraydah 52367, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
4
|
Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication? J Control Release 2022; 348:489-498. [PMID: 35654169 DOI: 10.1016/j.jconrel.2022.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Bacterial biofilms account for 80% of all chronic infections, with cells being up to 1000 times more resistant to antibiotics than their planktonic counterparts. The recently discovered ability of Helicobacter pylori to form biofilms once again highlights why this bacterium is one of the most successful human pathogens. The current treatments failure rate reaches 40% of cases, emphasizing that new therapeutic options are a pressing need. Nanostructured lipid carriers (NLC), with and without docosahexaenoic acid (DHA), were very effective against H. pylori planktonic cells but their effect on H. pylori biofilms was unknown. Here, DHA-loaded NLC (DHA-NLC) and NLC without any drug (blank NLC) were tested on an optimized H. pylori in vitro floating mature biofilm model. DHA-NLC and blank NLC reduced the total biofilm biomass and had a bactericidal effect against both biofilm and planktonic bacteria in all the concentrations tested (0.125-2 mg/mL). DHA-NLC achieved biofilm biomass reduction in a concentration ~ 8 times lower than blank NLC (0.125 vs 1 mg/mL, respectively). Both NLC were bactericidal at the lowest concentration tested (0.125 mg/mL) although with different efficiency, i.e. a decrease of ∼6 log10 for DHA-NLC and ∼5 log10 for blank NLC. In addition, the equivalent amount of free DHA (3.1 μM) only reduced bacterial viability in ∼2 log10, demonstrating the synergistic effect of DHA and NLC in the treatment of H. pylori biofilms. Nevertheless, although viable bacteria were not detected by colony forming unit (CFU) counting after treatment with both NLC, confocal microscopy imaging highlighted that some H. pylori cells remained alive. In addition, scanning electron microscopy (SEM) analysis confirmed an increase in bacteria with a coccoid morphology after treatment, suggesting a transition to a viable but non-culturable (VBNC) state. Altogether, it is herein established that NLC, even without any drug, are promising for the management of H. pylori bacteria organized in biofilms, opening new perspectives for the eradication of this gastric pathogen.
Collapse
|
5
|
Cardos AI, Maghiar A, Zaha DC, Pop O, Fritea L, Miere (Groza) F, Cavalu S. Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics (Basel) 2022; 12:508. [PMID: 35204598 PMCID: PMC8871415 DOI: 10.3390/diagnostics12020508] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
Rapid diagnosis and treatment application in the early stages of H. pylori infection plays an important part in inhibiting the transmission of this infection as this bacterium is involved in various gastric pathologies such as gastritis, gastro-duodenal ulcer, and even gastric neoplasia. This review is devoted to a quick overview of conventional and advanced detection techniques successfully applied to the detection of H. pylori in the context of a compelling need to upgrade the standards of the diagnostic methods which are currently being used. Selecting the best diagnostic method implies evaluating different features, the use of one or another test depending on accessibility, laboratories equipment, and the clinical conditions of patients. This paper aims to expose the diagnosis methods for H. pylori that are currently available, highlighting their assets and limitations. The perspectives and the advantages of nanotechnology along with the concept of nano(bio)sensors and the development of lab-on-chip devices as advanced tools for H. pylori detection, differentiation, and discrimination is also presented, by emphasizing multiple advantages: simple, fast, cost-effective, portable, miniaturized, small volume of samples required, highly sensitive, and selective. It is generally accepted that the development of intelligent sensors will completely revolutionize the acquisition procedure and medical decision in the framework of smart healthcare monitoring systems.
Collapse
Affiliation(s)
| | - Adriana Maghiar
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania; (A.I.C.); (D.C.Z.); (O.P.); (L.F.); (F.M.)
| | | | | | | | | | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania; (A.I.C.); (D.C.Z.); (O.P.); (L.F.); (F.M.)
| |
Collapse
|
6
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|