1
|
Du Y, Yang J, Qi Z, Yu J, Zhang R, Yu M, Cao H, Song T, Pan X, Wang S, Xiong Q, Liu Y. Rapid and Visual Detection of Pyricularia oryzae Using Coupled Recombinase Polymerase Amplification-Lateral Flow Dipstick Assay. PLANT DISEASE 2025:PDIS08241787RE. [PMID: 39568269 DOI: 10.1094/pdis-08-24-1787-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Rice blast, caused by Pyricularia oryzae, is one of the most destructive fungal diseases in rice, severely impacting rice production worldwide every year. Rapid, accurate, and visual detection of P. oryzae is essential for more effective prevention and control. In this study, we developed a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay to detect P. oryzae. Species-specific RPA primer pairs and probe were designed based on the target gene MGG_15975. The optimized reaction temperature and time were set at 37°C and 25 min, respectively. Specificity analysis showed that the assay could specifically detect P. oryzae isolates from rice, whereas other fungal species or Pyricularia species from grasses were not detected. Additionally, this assay demonstrated high sensitivity, capable of detecting as low as 10-2 ng/μl of P. oryzae genomic DNA, which was found to be 100 times more sensitive than conventional PCR. Furthermore, using this assay, P. oryzae was effectively detected in diseased leaves in rice fields and could also be identified at an early stage of infection before obvious lesions appeared in artificially inoculated rice seedlings. Therefore, the RPA-LFD assay developed in our study for the detection of P. oryzae is rapid, highly sensitive, and efficient, which has the potential application for early diagnosis of P. oryzae infection in rice fields.
Collapse
Affiliation(s)
- Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuchen Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qin Xiong
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Ashwini S, Bhavani PV, Deepa N, Sowmya N, Raghavendra MP. Development of sequence-characterized amplified region (SCAR) markers for accurate and differential identification of multienzyme-producing and non-enzymatic Aspergillus strains of industrial importance. Arch Microbiol 2022; 205:2. [PMID: 36436138 DOI: 10.1007/s00203-022-03340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Aspergillus strains are known to produce multiple enzymes of industrial importance. To screen Aspergillus isolates and select a strain with the ability to produce multiple enzymes and discriminate it from non-enzymatic strains, a rapid and accurate approach is required. With this background, a DNA fingerprinting-based study was conducted to develop a simple but accurate molecular detection method with the potential to discriminate multienzyme-producing Aspergillus strains from non-enzymatic strains, irrespective of species. To achieve this, Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR was employed to derive group-specific Sequence Characterized Amplified Region (SCAR) markers (i.e., markers corresponding to PCR amplicons of known DNA sequence). To this end, both group-specific (multienzyme-producing and non-enzymatic Aspergillus group) SCAR markers were sought by comparing the ERIC fingerprint profiles and used to develop primers for use in specific and differential identification of multienzyme-producing Aspergillus isolates. As an outcome, the two SCAR-PCR formats were developed. One format is for specific identification of multienzyme-producing Aspergillus strains (SCAR-PCR1), and the other for identifying non-enzymatic Aspergillus strains (SCAR-PCR2). Both SCAR-PCRs were able to discriminate between these two contrasting groups. These formats are simple but accurate and rapid compared to the time-consuming and laborious conventional methods. Therefore, they could be efficient as an alternative strategy for the high-throughput screening of industrially important Aspergillus strains.
Collapse
Affiliation(s)
- Shankar Ashwini
- Postgraduate Department of Microbiology, Maharani's Science College for Women, JLB Road, Mysuru, Karnataka, 570005, India.,Department of Microbiology, Bharathiyar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Nagaraj Deepa
- Department of Studies in Microbiology, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | - Nagaraj Sowmya
- Pentavalent Bio Sciences Private Limited, Electronic City, Phase 1, Bengaluru, Karnataka, 560100, India
| | - Maddur Puttaswamy Raghavendra
- Postgraduate Department of Microbiology, Maharani's Science College for Women, JLB Road, Mysuru, Karnataka, 570005, India.
| |
Collapse
|