1
|
Levy IK, Salustro D, Battaglini F, Lizarraga L, Murgida DH, Agusti R, D’Accorso N, Raventos Segura D, González Palmén L, Negri RM. Quantification of Enzymatic Biofilm Removal Using the Sauerbrey Equation: Application to the Case of Pseudomonas protegens. ACS OMEGA 2024; 9:10445-10458. [PMID: 38463305 PMCID: PMC10918834 DOI: 10.1021/acsomega.3c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
A methodology for the quantitative analysis of enzymatic removal of biofilms (BF) was developed, based on a quartz crystal microbalance (QCM) under stationary conditions. This was applied to the case of Pseudomonas protegens (PP) BFs, through a series of five enzymes, whose removal activity was screened using the presented methodology. The procedure is based on the following: when BFs can be modeled as rigid materials, QCM can be used as a balance under stationary conditions for determining the BFs mass reduction by enzymatic removal. For considering a BF as a rigid model, energy dissipation effects, associated with viscoelastic properties of the BF, must be negligible. Hence, a QCM system with detection of dissipation (referred to as QCM with dissipation) was used for evaluating the energy losses, which, in fact, resulted in negligible energy losses in the case of dehydrated PP BFs, validating the application of the Sauerbrey equation for the change of mass calculations. The stationary methodology reduces operating times and simplifies data analysis in comparison to dynamic approaches based on flow setups, which requires the incorporation of dissipation effects due to the liquid media. By carrying out QCM, glycosidase-type enzymes showed BF removal higher than 80% at enzyme concentration 50 ppm, reaching removal over 90% in the cases of amylase and cellulase/xylanase enzymes. The highest removal percentage produced a reduction from about 15 to 1 μg in the BF mass. Amylase enzyme was tested from below 50 to 1 ppm, reaching around 60% of removal at 1 ppm. The obtained results were supported by other instrumental techniques such as Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, high performance anion exchange chromatography, thermogravimetric analysis, and differential scanning calorimetry. The removal quantifications obtained with QCM were compared with those obtained by well-established screening techniques (UV-vis spectrophotometry using crystal violet and agar diffusion test). The proposed methodology expands the possibility of using a quartz microbalance to perform enzymatic activity screening.
Collapse
Affiliation(s)
- Ivana K. Levy
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Débora Salustro
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Leonardo Lizarraga
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
- Centro
de Investigación en Bionanociencias (CIBION), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
| | - Daniel H. Murgida
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosalía Agusti
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Norma D’Accorso
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | | | | | - R. Martín Negri
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Azuazu IN, Sam K, Campo P, Coulon F. Challenges and opportunities for low-carbon remediation in the Niger Delta: Towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165739. [PMID: 37499826 DOI: 10.1016/j.scitotenv.2023.165739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
There is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.
Collapse
Affiliation(s)
| | - Kabari Sam
- School of the Environment, Geography and Geosciences, University of Portsmouth, PO1 3QL, UK
| | - Pablo Campo
- School of Water Energy and Environment, Cranfield University, MK430AL, UK
| | - Frederic Coulon
- School of Water Energy and Environment, Cranfield University, MK430AL, UK.
| |
Collapse
|
3
|
Nnabuife OO, Ogbonna JC, Anyanwu C, Ike AC, Eze CN, Enemuor SC. Mixed bacterial consortium can hamper the efficient degradation of crude oil hydrocarbons. Arch Microbiol 2022; 204:306. [PMID: 35532873 DOI: 10.1007/s00203-022-02915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Crude oil degradation efficiency can be improved because of co-metabolism that exists when bacterial consortium is applied. However, because of possible vulnerability to environmental conditions and/or antagonistic interactions among members of the consortium, the degradation efficiency can be hampered. In this laboratory-based study, the biodegradation potentials of pure bacterial isolates namely Pseudomonas aeruginosa strain W15 (MW320658), Providencia vermicola strain W8 (MW320661) and Serratia marcescens strain W13 (MW320662) earlier isolated from crude oil-contaminated site and their consortium were evaluated using 3% crude oil-supplemented Bushnell Haas media. The efficiency was evaluated based on the viable cell count, biosurfactant analyses, percentage hydrocarbon degradation using gravimetric analysis and gas chromatography-mass spectrophotometry (GC-MS) analysis. There was decline in the population of W13 and predominance of W15 in the consortium as the incubation period progressed. Accelerated biodegradation of the crude oil hydrocarbons through co-metabolism was not achieved with the consortium; neither was there any improved resilience nor resistance to environmental changes of strain W13. The GC-MS analyses showed that the highest degradation was produced by W15 (48.23%) compared to W8 (46.04%), W13 (45.24%) and the Consortium (28.51%). The biodegradation of the crude oil hydrocarbons by W15, W8, W13 axenic cultures and their consortium treatments demonstrated that the bacterial constituent in a consortium can influence the synergistic effect that improves bioremediation. Future research that focuses on evaluating possible improvement in bioremediation through maintenance of diversity by continuous bioaugmentation using vulnerable but efficient degraders in a consortium is necessary to further understand the application of consortia for bioremediation improvement.
Collapse
Affiliation(s)
- Obianuju Obiajulu Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - James Chukwuma Ogbonna
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi Anyanwu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Chibuogwu Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuzor Nwadibe Eze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Simeon Chukwuemeka Enemuor
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|