1
|
Petrikov KV, Vetrova AA, Ivanova AA, Sazonova OI, Pozdnyakova-Filatova IY. Generalization of Classification of AlkB Family Alkane Monooxygenases from Rhodococcus ( sensu lato) Group Based on Phylogenetic Analysis and Genomic Context Comparison. Int J Mol Sci 2025; 26:1713. [PMID: 40004181 PMCID: PMC11854999 DOI: 10.3390/ijms26041713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Alkane-oxidizing bacteria play a crucial role in the global carbon cycle. Rhodococcus species are well-known hydrocarbon degraders, distinguished by the harboring of multiple homologs of AlkB family alkane monooxygenases. Although different types of rhodococcal AlkBs have been described, the overall picture of their diversity remains unclear, leaving gaps in the current classification. We conducted a phylogenetic analysis of all AlkBs identified in Rhodococcus (sensu lato) and examined the genomic context of the corresponding genes. The sequence clustering was well aligned with genomic neighborhoods, allowing both features to be used as criteria for proposing AlkB types that form distinct phylogenetic groups and have characteristic genomic contexts. Our approach allowed us to revise the classification of previously described AlkBs, identifying eight types on their basis, and to propose three new ones. Alkane monooxygenases whose genes are co-localized with rubredoxin genes can be considered a generalized AlkBR type, the most common among all Rhodococcus. In the AlkB0 type, which is a paralog of AlkBR, violations of conservativity in known alkane monooxygenase signature motifs were found. Our findings provide a more consistent classification framework for rhodococcal AlkB that prevents the over-reporting of "novel" types and contributes to a deeper understanding of alkane monooxygenase diversity.
Collapse
Affiliation(s)
- Kirill V. Petrikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.V.); (A.A.I.); (O.I.S.); (I.Y.P.-F.)
| | | | | | | | | |
Collapse
|
2
|
Pan L, Yuan B, Li Q, Ouyang J, Yang J, Zhou Y, Cui C. Efficient biodegradation of chlorobenzene via monooxygenation pathways by Pandoraea sp. XJJ-1 with high potential for groundwater bioremediation. Int Microbiol 2025; 28:355-364. [PMID: 38900217 DOI: 10.1007/s10123-024-00544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Chlorobenzene (CB), extensively used in industrial processes, has emerged as a significant contaminant in soil and groundwater. The eco-friendly and cost-effective microbial remediation has been increasingly favored to address this environmental challenge. In this study, a degrading bacterium was isolated from CB-contaminated soil at a pesticide plant, identified as Pandoraea sp. XJJ-1 (CCTCC M 2021057). This strain completely degraded 100 mg·L-1 CB and showed extensive degradability across a range of pH (5.0-9.0), temperature (10-37 °C), and CB concentrations (100-600 mg·L-1). Notably, the degradation efficiency was 85.2% at 15 °C, and the strain could also degrade six other aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (o-, m-, p-). The metabolic pathway of CB was inferred using ultraperformance liquid chromatography, gas chromatography-mass spectrometry, and genomic analysis. In strain XJJ-1, CB was metabolized to o-chlorophenol and 3-chloroxychol by CB monooxygenase, followed by ortho-cleavage by the action of 3-chlorocatechol 1,2-dioxygenase. Moreover, the presence of the chlorobenzene monooxygenation pathway metabolism in strain XJJ-1 is reported for the first time in Pandoraea. As a bacterium with low-temperature resistance and composite pollutant degradation capacity, strain XJJ-1 has the potential application prospects in the in-situ bioremediation of CB-contaminated sites.
Collapse
Affiliation(s)
- Lixu Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Yuan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingqing Li
- State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Ji Ouyang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Yang
- State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yan Zhou
- Sinopec Fifth Construction Co., Ltd, Guangzhou, 510145, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Li X, Wu Q, Wang Y, Li G, Su Y. UHPM dominance in driving the formation of petroleum-contaminated soil aggregate, the bacterial communities succession, and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134322. [PMID: 38636238 DOI: 10.1016/j.jhazmat.2024.134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
This study focused on the effects of urea humate-based porous materials (UHPM) on soil aggregates, plant physiological characteristics, and microbial diversity to explore the effects of UHPM on the phytoremediation of petroleum-contaminated soil. The compositions of soil aggregates, ryegrass (Lolium perenne) biomass, plant petroleum enrichment capacity, and bacterial communities in soils with and without UHPM were investigated. The results showed that UHPM significantly increased soil aggregate content by 0.25 mm-5 mm, resulting in higher fertilizer holding capacity, erosion resistance capacity, and plant biomass and microbial number than the soil without UHPM mixed. In addition, UHPM decreased the absorption of petroleum by plants in the soil while increasing the abundance of degrading bacteria and petroleum-degrading-related genes in the soil, thereby promoting the removal of hard-to-degrade petroleum components. RDA showed that, compared with the unimproved soil, each soil indicator was positively correlated with a high abundance of degrading bacteria in the improved soil and was significant. UHPM can be regarded as a petroleum-contaminated soil remediation agent that combines slow nutrient release with soil improvement effects.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China
| | - Quanfu Wu
- PetroChina Karamay Petrochemical Co., Ltd, Karamay 834000, China
| | - Yinfei Wang
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China
| | - Gang Li
- Xinjiang Uygur Autonomous Region Solid Waste Management Center, Urumqi 830046, China.
| | - Yuhong Su
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Lazzem A, Lekired A, Ouzari HI, Landoulsi A, Chatti A, El May A. Isolation and characterization of a newly chrysene-degrading Achromobacter aegrifaciens. Int Microbiol 2024; 27:857-869. [PMID: 37851202 DOI: 10.1007/s10123-023-00435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered substances of potential human health hazards because of their resistance to biodegradation and carcinogenic index. Chrysene is a PAH with a high molecular weight (HMW) that poses challenges for its elimination from the environment. However, bacterial degradation is an effective, environmentally friendly, and cost-effective solution. In our study, we isolated a potential chrysene-degrading bacteria from crude oil-contaminated seawater (Bizerte, Tunisia). Based on 16SrRNA analysis, the isolate S5 was identified as Achromobacter aegrifaciens. Furthermore, the results revealed that A. aegrifaciens S5 produced a biofilm on polystyrene at 20 °C and 30 °C, as well as at the air-liquid (A-L) interface. Moreover, this isolate was able to swim and produce biosurfactants with an emulsification activity (E24%) over 53%. Chrysene biodegradation by isolate S5 was clearly assessed by an increase in the total viable count. Confirmation was obtained via gas chromatography-mass spectrometry (GC-MS) analyses. A. aegrifaciens S5 could use chrysene as its sole carbon and energy source, exhibiting an 86% degradation of chrysene on day 7. In addition, the bacterial counts reached their highest level, over 25 × 1020 CFU/mL, under the conditions of pH 7.0, a temperature of 30 °C, and a rotary speed of 120 rpm. Based on our findings, A. aegrifaciens S5 can be a potential candidate for bioremediation in HMW-PAH-contaminated environments.
Collapse
Affiliation(s)
- Assia Lazzem
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia.
| | - Abdelmalek Lekired
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Alya El May
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
5
|
Fan L, Gong X, Lv Q, Bin D, Wang L. Construction of Shale Gas Oil-Based Drilling Cuttings Degrading Bacterial Consortium and Their Degradation Characteristics. Microorganisms 2024; 12:318. [PMID: 38399720 PMCID: PMC10891884 DOI: 10.3390/microorganisms12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Oil-based drilling cuttings (OBDCs) contain petroleum hydrocarbons with complex compositions and high concentrations, which have highly carcinogenic, teratogenic, and mutagenic properties. In this study, three highly efficient petroleum hydrocarbon-degrading bacteria were screened from OBDCs of different shale gas wells in Chongqing, China, and identified as Rhodococcus sp. and Dietzia sp. Because of their ability to degrade hydrocarbons of various chain lengths, a new method was proposed for degrading petroleum hydrocarbons in shale gas OBDCs by combining different bacterial species. Results showed that the bacterial consortium, consisting of the three strains, exhibited the highest degradation rate for petroleum hydrocarbons, capable of degrading 74.38% of long-chain alkanes and 93.57% of short-chain alkanes, respectively. Moreover, the petroleum hydrocarbon degradation performance of the bacterial consortium in actual OBDCs could reach 90.60% in the optimal conditions, and the degradation kinetic process followed a first-order kinetic model. This study provides a certain technical reserve for the bioremediation of shale gas OBDCs.
Collapse
Affiliation(s)
- Li Fan
- College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401336, China; (X.G.); (D.B.)
| | - Xianhe Gong
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401336, China; (X.G.); (D.B.)
- The Southwest Branch of the Chinese Academy of Environmental Sciences, Chongqing 401336, China
| | - Quanwei Lv
- College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Denghui Bin
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401336, China; (X.G.); (D.B.)
- The Southwest Branch of the Chinese Academy of Environmental Sciences, Chongqing 401336, China
| | - Li’Ao Wang
- College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|