1
|
Cao L, Ma J, Chen P, Hou X, Yang N, Lu Y, Huang H. Exploring the influence of DNA methylation and single nucleotide polymorphisms of the Myostatin gene on growth traits in the hybrid grouper ( Epinephelus fuscoguttatus (female) × Epinephelus polyphekadion (male)). Front Genet 2024; 14:1277647. [PMID: 38259615 PMCID: PMC10801740 DOI: 10.3389/fgene.2023.1277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Investigations into the correlation between growth characteristics and DNA methylation levels, along with genetic variations, can provide fundamental insights to enhance growth performance in groupers. The Myostatin (mstn) gene plays a vital role in regulating skeletal muscle development and growth. This study scrutinized the DNA methylation levels of the mstn gene across hybrid groupers (E. fuscoguttatus (♀) × E. polyphekadion (♂)) and their parental species, to evaluate its impact on growth attributes in grouper fish. The nucleotide sequence of the mstn gene was directly sequenced in the hybrid grouper, exhibiting different growth performance to identify the single nucleotide polymorphisms (SNPs) of the mstn gene and explore their correlation with growth characteristics. The findings revealed no significant differences in global DNA methylation levels within muscle tissue among the hybrid grouper and parents. However, significant differences in DNA methylation sites were discovered between the hybrid grouper and E. polyphekadion at sites 824 and 1521 (located at exon 2 and intron 2, respectively), and between E. fuscoguttatus and E. polyphekadion at site 1521. These variations could potentially influence the mRNA expression of the mstn gene. The study also identified that SNP g.1003 T > C in exon 2 of the mstn gene was significantly associated with various growth traits including body weight, total length, body length, head length, caudal peduncle height, and body height (p < 0.01). Specimens with the TT genotype at site 1003 demonstrated superior growth performance compared to those with the TC genotype. Furthermore, microstructural analyses of muscle tissue showed that the average area and diameter of muscle fibers in TT genotype individuals were significantly greater than those in TC genotype individuals. Therefore, this research provides robust evidence linking the DNA methylation level and polymorphisms of the mstn gene with growth traits, which could be beneficial for grouper breeding programs.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
2
|
Song F, Ye H, Shi L, Ouyang D, Sun J, Luo J. Characterization and functional analysis of myostatin and myogenin genes involved in temperature variation and starvation stress in Golden pompano, Trachinotus blochii. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111183. [PMID: 35247591 DOI: 10.1016/j.cbpa.2022.111183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023]
Abstract
Animal growth and development is a complicated process and is regulated by multi-genes. Myostatin (Mstn) and myogenin (Myog) are a pair of negative and positive regulators respectively, which play an important role in the generation of muscle cells. In order to study the function of these two genes in muscle growth of Trachinotus blochii, full lengths of two mstn genes (mstn-1 and mstn-2) and myog gene were cloned using RACE. We first identified and characterized the complete cDNA sequences of mstn-1, mstn-2, and myog genes derived from T. blochii, an economically important mariculture species in China. Multiple sequence alignment of amino acids and phylogenetic analysis revealed that the Mstn and Myog were highly conserved to the other Perciformes. In addition, gene duplication of mstn in T. blochii was observed. mstn-1 mRNA was mainly expressed in the muscle and gonad, while mstn-2 and myog transcripts were detectable mainly in the brain and muscle, respectively. Moreover, the nutritional status and temperature influenced abundance levels in brain and muscle. Results suggested that mstn and myog genes play an important role in muscle growth of T. blochii, mstn may not be limited to control of muscle growth in fish and could also be involved in other biological functions.
Collapse
Affiliation(s)
- Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Liping Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Dongdong Ouyang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides. Int J Mol Sci 2018; 19:ijms19102943. [PMID: 30262794 PMCID: PMC6213054 DOI: 10.3390/ijms19102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemokine receptor Cxcr4 evolved two paralogs in the teleost lineage. However, cxcr4a and cxcr4b have been characterized only in a few species. In this study, we identified two cxcr4 paralogs from the orange-spotted grouper, Epinephelus coioides. The phylogenetic relationship and gene structure and synteny suggest that the duplicated cxcr4a/b should result from the teleost-specific genome duplication (Ts3R). The teleost cxcr4 gene clusters in two paralogous chromosomes exhibit a complementary gene loss/retention pattern. Ec_cxcr4a and Ec_cxcr4b show differential and biased expression patterns in grouper adult tissue, gonads, and embryos at different stages. During embryogenesis, Ec_cxcr4a/b are abundantly transcribed from the neurula stage and mainly expressed in the neural plate and sensory organs, indicating their roles in neurogenesis. Ec_Cxcr4a and Ec_Cxcr4b possess different chemotactic migratory abilities from the human SDF-1α, Ec_Cxcl12a, and Ec_Cxcl12b. Moreover, we uncovered the N-terminus and TM5 domain as the key elements for specific ligand⁻receptor recognition of Ec_Cxcr4a-Ec_Cxcl12b and Ec_Cxcr4b-Ec_Cxcl12a. Based on the biased and divergent expression patterns of Eccxcr4a/b, and specific ligand⁻receptor recognition of Ec_Cxcl12a/b⁻Ec_Cxcr4b/a, the current study provides a paradigm of sub-functionalization of two teleost paralogs after Ts3R.
Collapse
|
4
|
Sun ZH, Zhou L, Li Z, Liu XC, Li SS, Wang Y, Gui JF. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:47-57. [DOI: 10.1016/j.cbpb.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/25/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
5
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Kanjanaworakul P, Sawatdichaikul O, Poompuang S. cDNA sequence and protein bioinformatics analyses of MSTN in African catfish (Clarias gariepinus). Mol Biol Rep 2016; 43:283-93. [PMID: 26912268 DOI: 10.1007/s11033-016-3961-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
Myostatin, also known as growth differentiation factor 8, has been identified as a potent negative regulator of skeletal muscle growth. The purpose of this study was to characterize and predict function of the myostatin gene of the African catfish (Cg-MSTN). Expression of Cg-MSTN was determined at three growth stages to establish the relationship between the levels of MSTN transcript and skeletal muscle growth. The partial cDNA sequence of Cg-MSTN was cloned by using published information from its congener walking catfish (Cm-MSTN). The Cg-MSTN was 1194 bp in length encoding a protein of 397 amino acids. The deduced MSTN sequence exhibited key functional sites similar to those of other members of the TGF-β superfamily, especially, the proteolytic processing site (RXXR motif) and nine conserved cysteines at the C-terminal. Expression of MSTN appeared to be correlated with muscle development and growth of African catfish. Protein bioinformatics revealed that the primary sequence of Cg-MSTN shared 98 % sequence identity with that of walking catfish Cm-MSTN with only two different residues, [Formula: see text]. and [Formula: see text]. The proposed model of Cg-MSTN revealed the key point mutation [Formula: see text] causing a 7.35 Å shorter distance between the N- and C-lobes and an approximately 11° narrow angle than those of Cm-MSTN. The substitution of a proline residue near the proteolytic processing site which altered the structure of myostatin may play a critical role in reducing proteolytic activity of this protein in African catfish.
Collapse
Affiliation(s)
- Poonmanee Kanjanaworakul
- Center for Agricultural Biotechnology, Kasetsart University, Nakorn Pathom, 73140, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, 10900, Thailand.
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
7
|
Zheng GD, Sun CF, Pu JW, Chen J, Jiang XY, Zou SM. Two myostatin genes exhibit divergent and conserved functions in grass carp (Ctenopharyngodon idellus). Gen Comp Endocrinol 2015; 214:68-76. [PMID: 25819013 DOI: 10.1016/j.ygcen.2015.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/06/2015] [Accepted: 03/22/2015] [Indexed: 01/23/2023]
Abstract
Myostatin (MSTN) is an important negative regulator of myogenesis, which inhibits myoblast proliferation and differentiation. Here, we report the isolation and characterization of two mstn genes in grass carp (Ctenopharyngodon idellus). Grass carp mstn-1 and mstn-2 cDNAs are highly divergent, sharing a relatively low amino acid sequence identity of 66%. In adult fish, both orthologs are expressed in numerous tissues and they are differentially regulated during a fasting/refeeding treatments. During embryogenesis, the mRNA levels of both mstn-1 and -2 were upregulated significantly at the beginning of somitogenesis, and maintained at high levels until hatching. Using in situ hybridization, grass carp mstn-1 mRNA was found to ubiquitously express at 12hpf, with strong signals in the notochord, and in the eyes, brain and tailbud at 24hpf, and in brain and notochord at 36hpf. In comparison, the mstn-2 mRNA can be detected in the eyes, brain and notochord at 24hpf, and in the notochord and hindbrain at 36hpf. Further overexpression of mstn-1 mRNA caused a strongly ventralized phenotype by inhibiting dorsal tissue development, while injection of mstn-2 mRNA resulted in obvious embryonic abnormalities in grass carp. These results provide some new insights into the functional conservation and divergence of mstn genes in teleost species.
Collapse
Affiliation(s)
- Guo-Dong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Cheng-Fei Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jian-Wei Pu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| |
Collapse
|
8
|
Characterization of MSTN/GDF11 gene from shrimp Macrobrachium nipponense and its expression profiles during molt cycle and after eyestalk ablation. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0273-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Myostatin-2 isolation and spatiotemporal expression comparison between myostatin-1 and -2 in Larimichthys crocea. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:57-63. [PMID: 24875565 DOI: 10.1016/j.cbpa.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022]
Abstract
Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes.
Collapse
|
11
|
Gabillard JC, Biga PR, Rescan PY, Seiliez I. Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013; 194:45-54. [PMID: 24018114 DOI: 10.1016/j.ygcen.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 11/21/2022]
Abstract
In the last decade, myostatin (MSTN), a member of the TGFβ superfamily, has emerged as a strong inhibitor of muscle growth in mammals. In fish many studies reveal a strong conservation of mstn gene organization, sequence, and protein structures. Because of ancient genome duplication, teleostei may have retained two copies of mstn genes and even up to four copies in salmonids due to additional genome duplication event. In sharp contrast to mammals, the different fish mstn orthologs are widely expressed with a tissue-specific expression pattern. Quantification of mstn mRNA in fish under different physiological conditions, demonstrates that endogenous expression of mstn paralogs is rarely related to fish muscle growth rate. In addition, attempts to inhibit MSTN activity did not consistently enhance muscle growth as in mammals. In vitro, MSTN stimulates myotube atrophy and inhibits proliferation but not differentiation of myogenic cells as in mammals. In conclusion, given the strong mstn expression non-muscle tissues of fish, we propose a new hypothesis stating that fish MSTN functions as a general inhibitors of cell proliferation and cell growth to control tissue mass but is not specialized into a strong muscle regulator.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Equipe Croissance et Qualité de la Chair des Poissons, Campus de Beaulieu, 35000 Rennes, France.
| | | | | | | |
Collapse
|
12
|
cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:30-9. [DOI: 10.1016/j.cbpa.2013.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/02/2013] [Accepted: 02/03/2013] [Indexed: 11/20/2022]
|
13
|
de Santis C, Gomes GB, Jerry DR. Abundance of myostatin gene transcripts and their correlation with muscle hypertrophy during the development of barramundi, Lates calcarifer. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:101-7. [DOI: 10.1016/j.cbpb.2012.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 01/22/2023]
|
14
|
Liu L, Yu X, Tong J. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol Biol Rep 2012; 39:9211-21. [PMID: 22714921 DOI: 10.1007/s11033-012-1794-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/09/2012] [Indexed: 11/25/2022]
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily and functions as a negative regulator of skeletal muscle development and growth. In this study, the bighead carp MSTN gene (AnMSTN for short) was cloned and characterized. The 3,769 bp genomic sequence of AnMSTN consisted of three exons and two introns, and the full length cDNA (2,141 bp) of the gene had an open reading frame encoding a polypeptide of 375 amino acids. The deduced amino acid sequence of AnMSTN showed 67.1-98.7 % homology with MSTNs of avian, mammalian and teleostean species. Sequence comparison and phylogenetic analysis confirmed the MSTNs were conserved throughout the vertebrates and AnMSTN belonged to MSNT-1 isoform. AnMSTN was expressed in various tissues with the highest expression in muscle. Two single nucleotide polymorphisms, g.1668T > C in intron 2 and g.2770C > A in 3' UTR, were identified in AnMSTN by sequencing PCR fragments, and genotyped by SSCP. Association analysis showed that g.2770C > A genotypes were significantly associated with total length, body length and body weight (P < 0.01). These results suggest that AnMSTN involves in the regulation of growth, and this polymorphism would be informative for further studies on selective breeding in bighead carp.
Collapse
Affiliation(s)
- Lusha Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | | | | |
Collapse
|
15
|
Seiliez I, Sabin N, Gabillard JC. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol Cell Endocrinol 2012; 351:220-6. [PMID: 22209759 DOI: 10.1016/j.mce.2011.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022]
Abstract
The muscle growth in mammals is regulated by several growth factors including myostatin (MSTN), a member of the transforming growth factor-beta (TGF-beta) superfamily. To date, it is unknown in fish whether MSTN could have any effect on proliferation or differentiation of myogenic cells. Using culture of trout satellite cells, we showed that mstn1a and mstn1b mRNA are expressed in myoblasts and that their expression decreased in differentiating myoblasts. We also demonstrated that a treatment with huMSTN decreased the proliferation of IGF1-stimulated myoblasts in a dose-dependent manner. By contrast, treatment of myoblasts with 100 nM of huMSTN for three days, did not affect the percentage of positive cells for myogenin neither the percentage of nuclei in myosin positive cells. Moreover, our results clearly indicated that huMSTN treatment had no effect on MyoD and myogenin protein levels, which suggests that huMSTN did not strongly affect MyoD activity. In conclusion, we showed that huMSTN inhibited proliferation but not differentiation of trout myoblasts, probably resulting from a lack of huMSTN effect on MyoD activity. Altogether, these results show high interspecies differences in the function of MSTN.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR1067 Nutrition Métabolisme et Aquaculture, Pôle d'hydrobiologie, CD918, F-64310 St-Pée-sur-Nivelle, France
| | | | | |
Collapse
|
16
|
Bertotto D, Poltronieri C, Negrato E, Richard J, Pascoli F, Simontacchi C, Radaelli G. Whole body cortisol and expression of HSP70, IGF-I and MSTN in early development of sea bass subjected to heat shock. Gen Comp Endocrinol 2011; 174:44-50. [PMID: 21872596 DOI: 10.1016/j.ygcen.2011.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023]
Abstract
Whole body cortisol levels were determined during early larval developmental stages of sea bass (Dicentrarchus labrax) subjected to a heat shock with the aim to investigate the correlation between the stress event and the activation of the hypothalamic-pituitary-interrenal axis. Moreover, the mRNA expression of inducible heat shock protein 70 (HSP70), insulin-like growth factor I (IGF-I) and myostatin (MSTN) was also detected. Whole body cortisol was determined by a radio-immunoassay (RIA) technique whereas the expression of HSP70, IGF-I and MSTN mRNAs was quantified by Real-Time PCR. Cortisol was detectable in all the larvae from hatching but its level increased significantly in larvae submitted to heat shock from 2-day post hatching onwards. An effect of the sole transfer on cortisol levels was detectable at day 10, indicating an increase of the hypothalamic-pituitary-interrenal axis sensitivity from this stage of sea bass development. In animals exposed to heat shock, the expression of inducible HSP70 resulted in a marked increase of mRNA levels already at hatching. This increase was significantly higher from 6 days onwards if compared to controls. Moreover, heat shock resulted in a decrease (although not significant) in IGF-I mRNA expression of stressed larvae if compared to controls. On the contrary, heat shock did not influence the expression of MSTN mRNA in all groups. The results indicate a very early activation of the hypothalamic-pituitary-interrenal axis and in general of the stress response during the development of European sea bass. Moreover, these results suggest the importance of cortisol and inducible HSP70 as bioindicators of stress in aquaculture and confirm the role of IGF-I and MSTN as regulatory factors during development and growth of fish.
Collapse
Affiliation(s)
- Daniela Bertotto
- Department of Experimental Veterinary Sciences, Faculty of Veterinary Medicine, University of Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Olivotto I, Di Stefano M, Rosetti S, Cossignani L, Pugnaloni A, Giantomassi F, Carnevali O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:207-18. [PMID: 21320627 DOI: 10.1016/j.cbpa.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 12/21/2022]
Abstract
In fast growing organisms, like fish larvae, fatty acids provided through live prey are essential to satisfy high energy demand and are required to promote growth. Therefore, in recent decades, a great amount of research has been directed towards the development of lipid enrichment in order to improve larval fish survival and growth. However, in fish, the biochemical and molecular processes related to highly unsaturated fatty acid (HUFA) administration are still poorly understood. In the current study, the false percula clownfish, a short larval phase marine species, was used as an experimental model and the effects of a standard and a HUFAs-enriched diet were tested through a molecular, biochemical, ultrastructural and morphometric approach. Our results support the hypothesis that HUFA administration may improve larval development through the presence of better structured mitochondria, a higher synthesis of energy compounds and coenzymes with a central position in the metabolism, with respect to controls. This higher energy status was confirmed by better growth performance and a shorter larval phase in larvae fed with an enriched diet with respect to the control. This strategy of rapid growth and early energy storage may be considered positively adaptive and beneficial to the survival of this species.
Collapse
Affiliation(s)
- Ike Olivotto
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Radaelli G, Poltronieri C, Simontacchi C, Negrato E, Pascoli F, Libertini A, Bertotto D. Immunohistochemical localization of IGF-I, IGF-II and MSTN proteins during development of triploid sea bass (Dicentrarchus labrax). Eur J Histochem 2010; 54:e16. [PMID: 20558336 PMCID: PMC3167297 DOI: 10.4081/ejh.2010.e16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 01/12/2023] Open
Abstract
The cellular localization of IGF-I, IGF-II and MSTN proteins was investigated during ontogenesis of triploid sea bass (Dicentrarchus labrax) by an immunohistochemical approach. The results were compared with those observed in diploids. IGF-I immunostaining was mainly observed in skin, skeletal muscle, intestine and gills of both diploids and triploids. From day 30 of larval life, IGF-I immunoreactivity observed in skeletal muscle, intestine, gills and kidney was stronger in triploids than in diploids. At day 30, triploids exhibited a standard length significantly higher than the one of diploids. Although IGF-II and MSTN immunoreactivity was detectable in different tissues and organs, no differences between diploids and triploids were observed. The spatial localization of IGF-I, IGF-II and MSTN proteins detected in this study is in agreement with previous findings on the distribution of these proteins in diploid larvae and fry. The highest IGF-I immunoreactivity observed in triploids suggests a possible involvement of ploidy in their growth performance.
Collapse
Affiliation(s)
- G Radaelli
- Department of Experimental VeterinarySciences, University of Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Medeiros EF, Phelps MP, Fuentes FD, Bradley TM. Overexpression of follistatin in trout stimulates increased muscling. Am J Physiol Regul Integr Comp Physiol 2009; 297:R235-42. [PMID: 19474387 DOI: 10.1152/ajpregu.91020.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both.
Collapse
Affiliation(s)
- Erika F Medeiros
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
20
|
Temporal and spatial expression pattern of the myostatin gene during larval and juvenile stages of the Chilean flounder (Paralichthys adspersus). Comp Biochem Physiol B Biochem Mol Biol 2008; 151:197-202. [DOI: 10.1016/j.cbpb.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 11/21/2022]
|
21
|
De Santis C, Evans BS, Smith-Keune C, Jerry DR. Molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer) myostatin gene. BMC Genomics 2008; 9:82. [PMID: 18282302 PMCID: PMC2292173 DOI: 10.1186/1471-2164-9-82] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 02/19/2008] [Indexed: 11/13/2022] Open
Abstract
Background Myostatin (MSTN) is a member of the transforming growth factor-β superfamily that negatively regulates growth of skeletal muscle tissue. The gene encoding for the MSTN peptide is a consolidate candidate for the enhancement of productivity in terrestrial livestock. This gene potentially represents an important target for growth improvement of cultured finfish. Results Here we report molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer) MSTN-1 gene. The barramundi MSTN-1 was encoded by three exons 379, 371 and 381 bp in length and translated into a 376-amino acid peptide. Intron 1 and 2 were 412 and 819 bp in length and presented typical GT...AG splicing sites. The upstream region contained cis-regulatory elements such as TATA-box and E-boxes. A first assessment of sequence variability suggested that higher mutation rates are found in the 5' flanking region with several SNP's present in this species. A putative micro RNA target site has also been observed in the 3'UTR (untranslated region) and is highly conserved across teleost fish. The deduced amino acid sequence was conserved across vertebrates and exhibited characteristic conserved putative functional residues including a cleavage motif of proteolysis (RXXR), nine cysteines and two glycosilation sites. A qualitative analysis of the barramundi MSTN-1 expression pattern revealed that, in adult fish, transcripts are differentially expressed in various tissues other than skeletal muscles including gill, heart, kidney, intestine, liver, spleen, eye, gonad and brain. Conclusion Our findings provide valuable insights such as sequence variation and genomic information which will aid the further investigation of the barramundi MSTN-1 gene in association with growth. The finding for the first time in finfish MSTN of a miRNA target site in the 3'UTR provides an opportunity for the identification of regulatory mutations on the expression of this gene.
Collapse
Affiliation(s)
- Christian De Santis
- Aquaculture Genetics Research Program, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | | | | | | |
Collapse
|
22
|
Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces: Osteichthyes). Cell Tissue Res 2007; 331:643-58. [PMID: 18071755 DOI: 10.1007/s00441-007-0517-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/12/2007] [Indexed: 01/22/2023]
Abstract
The distribution of insulin-like growth factor-I (IGF-I) and myostatin (MSTN) was investigated in sea bass (Dicentrarchus labrax) by real-time polymerase chain reaction (PCR), in situ hybridization (ISH) and immunohistochemistry. Real-time PCR indicated that IGF-I mRNA increased from the second day post-hatching and that this trend became significant from day 4. ISH confirmed a strong IGF-I mRNA expression from the first week post-hatching, with the most abundant expression being detected in the liver of larvae and adults. Real-time PCR also showed that the level of MSTN mRNA increased significantly from day 25. The expression of MSTN mRNA was higher in muscle and almost absent in other anatomical regions in both larvae and adults. Interestingly, the lateral muscle showed a quantitative differential expression of IGF-I and MSTN mRNAs in red and white muscle, depending on the developmental stage examined. IGF-I immunoreactivity was detected in developing intestine at hatching and in skeletal muscle, skin and yolk sac. MSTN immunostaining was evident in several tissues and organs in both larvae and adults. Both IGF-I and MSTN proteins were detected in the liver from day 4 post-hatching and, subsequently, in the kidney and heart muscle from day 10. Our results suggest, on the basis of a combined methodological approach, that IGF-I and MSTN are involved in the regulation of somatic growth in the sea bass.
Collapse
|
23
|
Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus). Res Vet Sci 2007; 85:86-91. [PMID: 18037460 DOI: 10.1016/j.rvsc.2007.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/23/2022]
Abstract
Myostatin is a potent growth and differentiation factor involved in skeletal muscle tissue formation in vertebrates. However, recent studies in chicken embryo suggested that the myostatin was expressed even before the establishment of myogenic lineage. No studies have thus far been reported in birds to define the role of myostatin during the embryonic organogenesis. The present experiment was designed for studying the expression profiles of myostatin mRNA in the chicken liver, heart, brain, and intestine during their morphogenesis, using real-time PCR. The myostatin mRNA expression was significantly upregulated in liver during E15-E18. Similar results were observed during the development of chicken heart. In brain, the expression of myostatin was upregulated from E4 onwards. In intestine, the expression of myostatin was significantly increased many folds on E9-E18. Therefore, the increase in myostatin expression might be related to the growth of liver and heart on days E12-E18; morphogenesis and growth of brain during E15-E18; and morphogenesis and differentiation of intestine during E9-E18. In the present study, the tissue-specific expression of myostatin gene in chicken is similar to fishes, but different from that in mammals. Further, the inspection of chicken genome also suggested that there is no differentiation of GDF-8 and -11. A recent finding suggests that the chicken myostatin gene is closely related to mammals than fishes. Therefore, we propose that the chicken myostatin gene might have diverged in its function between teleosts and mammals. Indeed it is possible that its function might have only become fully differentiated to serve as a control of muscle mass in mammals.
Collapse
|
24
|
Chen YM, Wei CY, Chien CH, Chang HW, Huang SI, Yang HL, Chen TY. Myostatin gene organization and nodavirus-influenced expression in orange-spotted grouper (Epinephelus coioides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:215-27. [PMID: 20483295 DOI: 10.1016/j.cbd.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
The relationship(s) between nodavirus infection and myostatin expression in the skeletal muscle tissue of grouper is unclear. To investigate, the grouper (Epinephelus coioides) myostatin gene was cloned and cDNA was utilized to examine the expression of the gene in skeletal muscle and serum of healthy (uninfected) grouper and fish naturally infected with nodavirus. The myostatin gene comprises three exons and two introns and is transcribed as a 2778-bp mRNA length that encodes a 376-aa precursor protein. All exon-intron boundaries conformed to the consensus sequences. Alignment of the upstream sequences indicated that the grouper myostatin promoter has been highly conserved during evolution. Sequence analyses of 1936 bp of the upstream region revealed ten E-box motifs. The protein was consistent with the predicted molecular weight (approximately 42 kDa) of the unprocessed monomeric precursor protein and the processed myostatin form of the protein secreted into the plasma. Transient transfection studies revealed that the activity of the myostatin promoter decreased in a subset of viral titers. Grouper naturally infected with nodavirus displayed downregulation of the myostatin protein.
Collapse
Affiliation(s)
- Y-M Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Ye HQ, Chen SL, Sha ZX, Liu Y. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:262-72. [PMID: 17308997 DOI: 10.1007/s10126-006-6093-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/21/2006] [Indexed: 05/14/2023]
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-beta (TGF-beta) superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. However, few reports are available about the structure and function of MSTN in teleost. Here, the MSTN gene was cloned from sea perch (Lateolabrax japonicus) by homology cloning and genomic walking. In the 4873-bp genomic sequence, three exons, two introns, and 5' and 3' flanking sequences were identified. The sea perch MSTN gene encodes a 374-amino acid protein, including a signal peptide, conserved cysteine residues, and a RXXR proteolytic cleavage domain. Expression analysis of MSTN revealed that MSTN was highly expressed in eyes, brain, and muscle; intermediately in intestine; and weakly in gill, spleen, liver, and heart. It was demonstrated that MSTN mRNA was highly expressed in embryonic stem cell line (LJES1), but it was undetectable in several types of somatic cell lines from sea perch, including fibroblast-like cell, epithelioid cell, and lymphocyte-like cell. Further, it was demonstrated that the 5' flanking region of the MSTN gene can drive the expression of green fluorescent protein (GFP) reporter gene in LJES1 cells and transgenic zebrafish (Danio rerio). This is the first report on the expression profile of MSTN gene in various types of cell cultures.
Collapse
Affiliation(s)
- Han-Qing Ye
- Key Lab For Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | | | | | | |
Collapse
|