1
|
Hanif N, Miftah JA, Yanti HD, Oluwabusola ET, Zahra VA, Salleh NF, Kundukad B, Tan LT, de Voogd NJ, Rachmania N, Jaspars M, Kjelleberg S, Noviendri D, Murni A, Tanaka J. Integrated Biological and Chemical Investigation of Indonesian Marine Organisms Targeting Anti-Quorum-Sensing, Anti-Biofilm, Anti-Biofouling, and Anti-Biocorrosion Activities. Molecules 2025; 30:1202. [PMID: 40141983 PMCID: PMC11944283 DOI: 10.3390/molecules30061202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine organisms collected in Indonesian waters was conducted using a robust panel of assays. These included antimicrobial tests and classical biosurfactant assays (drop collapse and oil displacement), as well as anti-quorum-sensing (QS) and anti-biofilm assays. These screening efforts identified five active extracts with promising activities. Among these, EtOAc extracts of the marine tunicate Sigilina cf. signifera (0159-22e) and the marine sponge Lamellodysidea herbacea (0194-24c) demonstrated significant anti-biofouling activity against Perna indica and anti-biocorrosion performance (mpy 10.70 ± 0.70 for S. cf. signifera; 7.87 ± 0.86 for L. herbacea; 13.60 ± 1.70 for positive control Tetracorr CI-2915). Further chemical analyses of the active extracts, including LC-HR-MS/MS, MS-based molecular networking, and chemoinformatics, revealed the presence of both known and new bioactive compounds. These included tambjamines and polybrominated diphenyl ethers (PBDEs), which are likely contributors to the observed bioactivities. Subsequent investigations uncovered new anti-QS and anti-biofilm properties in synthetic and natural PBDEs 1-12 previously derived from L. herbacea. Among these, 8 exhibited the most potent anti-QS activity, with an IC50 value of 15 µM, while 4 significantly reduced biofilm formation at a concentration of 1 µM. This study highlights the potential of marine-derived compounds in addressing biofouling and biocorrosion challenges in a sustainable and effective manner.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Jihan Azmi Miftah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Henny Dwi Yanti
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia; (H.D.Y.); (A.M.)
| | - Emmanuel Tope Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.T.O.); (M.J.)
| | - Vira Amanda Zahra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Nurul Farhana Salleh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.F.S.); (L.T.T.)
| | - Binu Kundukad
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; (B.K.); (S.K.)
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.F.S.); (L.T.T.)
| | - Nicole J. de Voogd
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands;
- Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Nisa Rachmania
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.T.O.); (M.J.)
| | - Staffan Kjelleberg
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; (B.K.); (S.K.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2033, Australia
| | - Dedi Noviendri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, BRIN Cibinong-Bogor, Bogor 16911, Indonesia;
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia; (H.D.Y.); (A.M.)
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan;
| |
Collapse
|
2
|
Immunomodulatory Activity of the Marine Sponge, Haliclona ( Soestella) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar Albino Rats: Immunosuppression and Th1-Skewed Cytokine Response. J Immunol Res 2020; 2020:7281295. [PMID: 33274242 PMCID: PMC7683145 DOI: 10.1155/2020/7281295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Natural secondary metabolites of sponges of the genus Haliclona are associated with an array of biological activity with therapeutic usage. We investigated the immunopharmacological properties of a presumably novel marine sponge species from Sri Lanka, Haliclona (Soestella) sp. Sponge material was collected from southern Sri Lanka by scuba diving. Sponge identification was based on spicule and skeleton morphology using light microscopy. Selected in vivo and ex vivo tests investigated nonfunctional and functional immunomodulatory activity of the Haliclona (Soestella) sp. crude extract (HSCE) in the Wistar rat model. Compared to the controls, rats orally gavaged daily for 14 consecutive days with 15 mg/kg dose of the HSCE manifested a significant reduction of immune cell counts of total WBCs (by 17%; p < 0.01), lymphocytes (38%), platelets (52%), splenocytes (20%), and bone marrow cells (BMC; 60%) (p < 0.001), with a concurrent increase in the neutrophil : lymphocyte ratio (p < 0.05); RBC counts abated by 53% (p < 0.001). A significant reduction of the splenosomatic index was evident with the 10 and 15 mg/kg doses (p < 0.001). Rat plasma TNF-α cytokine level was augmented by tenfold (p < 0.001), IL-6 level by twofold (p < 0.01) with the 15 mg/kg HSCE treatment, while IL-10 was detectable in rat plasma only with this treatment; the corresponding Th1 : Th2 cytokine ratio (TNF-α : IL-10) was indicative of an unequivocal Th1-skewed cytokine response (p < 0.01). Ex vivo bone marrow cell and splenocyte proliferation were significantly and dose dependently impaired by HSCE (IC50 0.719 and 0.931 μg/mL, respectively; p < 0.05). Subacute toxicity testing established that HSCE was devoid of general toxic, hepatotoxic, and nephrotoxic effects. In conclusion, HSCE was orally active, nontoxic, and effectively suppressed nonfunctional and functional immunological parameters of Wistar rats, suggestive of the potential use of the HSCE as an immunosuppressant drug lead.
Collapse
|
3
|
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Taki AC, Addison RS, Hayes S, Beattie KD, McGee SL, Martin SD, Ekins MG, Hooper JNA, Chang BCH, Hofmann A, Davis RA, Gasser RB. Identification of Fromiamycalin and Halaminol A from Australian Marine Sponge Extracts with Anthelmintic Activity against Haemonchus contortus. Mar Drugs 2019; 17:md17110598. [PMID: 31652835 PMCID: PMC6891614 DOI: 10.3390/md17110598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/29/2023] Open
Abstract
There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource of novel chemical entities. This study investigated 2000 extracts from marine invertebrates, collected from Australian waters, for anthelmintic activity. Using a well-established in vitro bioassay, these extracts were screened for nematocidal activity against Haemonchus contortus — a socioeconomically important parasitic nematode of livestock animals. Extracts (designated Mu-1, Ha-1 and Ha-2) from two marine sponges (Monanchora unguiculata and Haliclona sp.) each significantly affected larvae of H. contortus. Individual extracts displayed a dose-dependent inhibition of both the motility of exsheathed third-stage larvae (xL3s) and the development of xL3s to fourth-stage larvae (L4s). Active fractions in each of the three extracts were identified using bioassay-guided fractionation. From the active fractions from Monanchora unguiculata, a known pentacyclic guanidine alkaloid, fromiamycalin (1), was purified. This alkaloid was shown to be a moderately potent inhibitor of L4 development (half-maximum inhibitory concentration (IC50) = 26.6 ± 0.74 µM) and L4 motility (IC50 = 39.4 ± 4.83 µM), although it had a relatively low potency at inhibiting of xL3 motility (IC50 ≥ 100 µM). Investigation of the active fractions from the two Haliclona collections led to identification of a mixture of amino alcohol lipids, and, subsequently, a known natural product halaminol A (5). Anthelmintic profiling showed that 5 had limited potency at inhibiting larval development and motility. These data indicate that fromiamycalin, other related pentacyclic guanidine alkaloids and/or halaminols could have potential as anthelmintics following future medicinal chemistry efforts.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Faculty of Health and Life Sciences, Federation University, Ballarat, Victoria 3350, Australia.
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Karren D Beattie
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sean L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Sheree D Martin
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | | | | | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
4
|
Sánchez-Lozano I, Hernández-Guerrero CJ, Muñoz-Ochoa M, Hellio C. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. Int J Mol Sci 2019; 20:E4863. [PMID: 31574976 PMCID: PMC6801554 DOI: 10.3390/ijms20194863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Biofouling causes major economic losses in the maritime industry. In our site study, the Bay of La Paz (Gulf of California), biofouling on immersed structures is a major problem and is treated mostly with copper-based antifouling paints. Due to the known environmental effect of such treatments, the search for environmentally friendly alternatives in this zone of high biodiversity is a priority to ensure the conservation and protection of species. The aim of this work was to link chemical ecology to marine biotechnology: indeed, the natural defense of macroalgae and sponge was evaluated against biofoulers (biofilm and macrofoulers) from the same geographical zone, and some coatings formulation was done for field assays. Our approach combines in vitro and field bioassays to ensure the selection of the best AF agent prospects. The 1st step consisted of the selection of macroalgae (5 species) and sponges (2 species) with surfaces harboring a low level of colonizers; then extracts were prepared and assayed for toxicity against Artemia, activity towards key marine bacteria involved in biofilm formation in the Bay of La Paz, and the potency to inhibit adhesion of macroorganisms (phenoloxidase assays). The most active and non-toxic extracts were further studied for biofouling activity in the adhesion of the bacteria involved in biofilm formation and through incorporation in marine coatings which were immersed in La Paz Bay during 40 days. In vitro assays demonstrated that extracts of Laurencia gardneri, Sargassum horridum (macroalgae), Haliclona caerulea and Ircinia sp. (sponges) were the most promising. The field test results were of high interest as the best formulation were composed of extracts of H. caerulea and S. horridum and led to a reduction of 32% of biofouling compared with the control.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claudia Judith Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Mauricio Muñoz-Ochoa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France.
| |
Collapse
|
5
|
Zhang J, Ling W, Yang Z, Liang Y, Zhang L, Guo C, Wang K, Zhong B, Xu S, Xu Y. Isolation and Structure-Activity Relationship of Subergorgic Acid and Synthesis of Its Derivatives as Antifouling Agent. Mar Drugs 2019; 17:E101. [PMID: 30736380 PMCID: PMC6410164 DOI: 10.3390/md17020101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, as part of our continuous search for environmentally-friendly antifoulants from natural resources, subergorgic acid (SA) was identified from the gorgonian coral Subergorgia suberosa, demonstrating non-toxic, significant inhibitory effects (EC50 1.25 μg/mL, LC50 > 25 μg/mL) against the settlement of Balanus amphitrite. To further explore the bioactive functional groups of SA and synthesize more potent antifouling compounds based on the lead SA, the structure-activity relationships of SA were studied, followed by rational design and synthesis of two series of SA derivatives (one being benzyl esters of SA and another being SA derivatives containing methylene chains of various lengths). Our results indicated that (1) both the double bond and ketone carbonyl are essential elements responsible for the antifouling effect of SA, while the acid group is not absolutely necessary for maintaining the antifouling effect; (2) all benzyl esters of SA displayed good antifouling effects (EC50 ranged from 0.30 to 2.50 μg/mL) with the most potent compound being 5 (EC50 0.30 μg/mL, LC50 > 25 μg/mL), which was over four-fold more potent than SA; and (3) the introduction of a methylene chain into SA reduces the antifouling potency while the length of the methylene chain may differently influence the antifouling effect, depending on the functional group at the opposite site of the methylene chain. Not only has this study successfully revealed the bioactive functional groups of SA, contributing to the mechanism of SA against the settlement of B. amphitrite, but it has also resulted in the identification of a more potent compound 5, which might represent a non-toxic, high-efficiency antifoulant.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
- Department of Chemistry, Jinan University, Guangzhou 510000, China.
| | - Wei Ling
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Zhiqiang Yang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Linyan Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Can Guo
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Kailing Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518000, China.
| | - Balian Zhong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Shihai Xu
- Department of Chemistry, Jinan University, Guangzhou 510000, China.
| | - Ying Xu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
6
|
The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system. Appl Microbiol Biotechnol 2016; 100:10609-10626. [PMID: 27717966 DOI: 10.1007/s00253-016-7878-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 106 cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.
Collapse
|
7
|
El Amraoui B, Biard JF, Ikbal FEZ, El Wahidi M, Kandil M, El Amraoui M, Fassouane A. Activity of Haliscosamine against Fusarium oxysporum f.sp. melonis: in vitro and in vivo analysis. SPRINGERPLUS 2015; 4:16. [PMID: 25625038 PMCID: PMC4302159 DOI: 10.1186/s40064-015-0797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 11/16/2022]
Abstract
Marine sponges are a potential source of new molecules with diverse biological activities. We have previously isolated a sphingosine derivative, (9Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (Haliscosamine) from the Moroccan sea sponge Haliclona viscosa. The aim of this study was to test Haliscosamine in vitro and in vivo for its antifungal activity against Fusarium oxysporum f.sp. melonis causing fusarium wilt of melon. Overall, in vitro test showed that haliscosamine has a similar effect as DESOGERME SP VEGETAUX®. In addition, in vivo showed a significant effect against Fusarium oxysporum f.sp. melonis. Taking to gather, our results suggest that haliscosamine constitutes a potential candidate against Fusarium oxysporum f.sp. melonis and the possibility to use in phytopathology.
Collapse
|
8
|
Dewi AS, Hadi TA, Fajarningsih ND, Blanchfield JT, Bernhardt PV, Garson MJ. Acanthocyclamine A From the Indonesian Marine Sponge Acanthostrongylophora ingens. Aust J Chem 2014. [DOI: 10.1071/ch14107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new 3-alkylpiperidine compound (–)-acanthocyclamine A (1) has been obtained from the methanolic extract of Acanthostrongylophora ingens (order Haplosclerida, family Petrosiidae) collected from Wakatobi Marine National Park in South East Sulawesi, Indonesia. The structure of 1 was investigated by extensive 1D- and 2D-NMR experiments. The absolute configuration of 1 was established by X-ray crystallography from anomalous dispersion effects using Cu radiation as C2 (R), C3 (R), C7 (R), and C9 (R). A plausible biosynthetic scheme leading to 1 is presented, and compared with the biosynthetic pathway proposed for the manzamine alkaloids.
Collapse
|
9
|
Ribeiro SM, Rogers R, Rubem AC, Da Gama BAP, Muricy G, Pereira RC. Antifouling activity of twelve demosponges from Brazil. BRAZ J BIOL 2013; 73:501-6. [DOI: 10.1590/s1519-69842013000300006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022] Open
Abstract
Benthic marine organisms are constantly exposed to fouling, which is harmful to most host species. Thus, the production of secondary metabolites containing antifouling properties is an important ecological advantage for sessile organisms and may also provide leading compounds for the development of antifouling paints. High antifouling potential of sponges has been demonstrated in the Indian and Pacific oceans and in the Caribbean and Mediterranean seas. Brazilian sponges remain understudied concerning antifouling activities. Only two scientific articles reported this activity in sponges of Brazil. The objective of this study was to test crude extracts of twelve species of sponges from Brazil against the attachment of the mussel Perna perna through laboratorial assays, and highlight promising species for future studies. The species Petromica citrina, Amphimedon viridis, Desmapsamma anchorata, Chondrosia sp., Polymastia janeirensis, Tedania ignis, Aplysina fulva, Mycale angulosa, Hymeniacidon heliophila, Dysidea etheria, Tethya rubra, and Tethya maza were frozen and freeze-dried before extraction with acetone or dichloromethane. The crude extract of four species significantly inhibited the attachment of byssus: Tethya rubra (p = 0.0009), Tethya maza (p = 0.0039), Petromica citrina (p = 0.0277), and Hymeniacidon heliophila (p = 0.00003). These species, specially, should be the target of future studies to detail the substances involved in the ability antifouling well as to define its amplitude of action.
Collapse
Affiliation(s)
- SM. Ribeiro
- Universidade Federal do Rio de Janeiro, Brazil; Universidade Federal Fluminense, Brazil
| | - R. Rogers
- Universidade Federal Fluminense, Brazil
| | - AC. Rubem
- Universidade Federal Fluminense, Brazil
| | | | - G. Muricy
- Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Cahill P, Heasman K, Jeffs A, Kuhajek J, Mountfort D. Preventing ascidian fouling in aquaculture: screening selected allelochemicals for anti-metamorphic properties in ascidian larvae. BIOFOULING 2012; 28:39-49. [PMID: 22235790 DOI: 10.1080/08927014.2011.648624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fouling by ascidians causes major stock losses and disrupts production in marine aquaculture, especially bivalve aquaculture. Currently, no cost effective solution exists despite the testing of many prospective control techniques. This study examined a range of allelochemicals suspected to inhibit metamorphosis in marine larvae. Five allelochemicals were screened in a larval metamorphosis bioassay using Ciona savignyi Herdman to determine their potential as a remedy for ascidian fouling in bivalve aquaculture. Three of the compounds tested inhibited ascidian larval metamorphosis and increased mortality at low concentrations. These were radicicol (99% inhibition of metamorphosis [IC₉₉], 0.8 μg ml⁻¹; 99% lethal concentration [LC₉₉], 2.5 μg ml⁻¹; 99% lethal time [LT₉₉], 7.0 days), polygodial (IC₉₉, 0.003 μg ml⁻¹; LC₉₉, 0.9 μg ml⁻¹; LT₉₉, 6.4 days), and ubiquinone-10 (IC₉₉, 3.2 μg cm⁻²; LC₉₉, 14.5 μg cm⁻²; LT₉₉, 5.6 days; expressed as μg cm⁻² due to insolubility in water and ethanol). While spermidine significantly affected metamorphosis and mortality of C. savignyi, the effect was insufficient to achieve inhibition in 99% of larvae over the 7-day timeframe of the assay. Muscimol did not affect metamorphosis or mortality at the concentrations tested. The present study demonstrates that radicicol, polygodial and ubiquinone-10 have potential for future development in antifoulant formulations targeted towards the inhibition of metamorphosis in ascidian larvae, while spermidine and muscimol appear unsuitable.
Collapse
|
11
|
Genta-Jouve G, Thomas OP. Sponge chemical diversity: from biosynthetic pathways to ecological roles. ADVANCES IN MARINE BIOLOGY 2012; 62:183-230. [PMID: 22664123 DOI: 10.1016/b978-0-12-394283-8.00004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since more than 50 years, sponges have raised the interest of natural product chemists due to the presence of structurally original secondary metabolites. While the main objective were first to discover new drugs from the Sea, a large number of interrogations arose along with the isolation and structure elucidations of a wide array of original architectures and new families of natural products not found in the terrestrial environment. In this chapter, we focus on the results obtained during this period on the following questions. A preliminary but still unresolved issue to be addressed will be linked to the role of the microbiota into the biosynthesis of these low-weight compounds. Our knowledge on the biosynthetic pathways leading to plant secondary metabolites is now well established, and this background will influence our comprehension of the biosynthetic events occurring in a sponge. But is the level of similarity between both metabolisms so important? We clearly need more experimental data to better assess this issue. This question is of fundamental interest because sponges have a long evolutionary history, and this will allow a better understanding on the transfer of the genetic information corresponding to the biosynthesis of secondary metabolites. After the how, the why! The question of the ecological role of these metabolites is also of high importance first not only because they can serve as synapomorphic characters but also because they may represent chemical cues in the water environment. Even if most of these compounds are considered as defensive weapons for these sessile invertebrates, they may also be linked to physiological characters as the reproduction. Finally, a metabolomic approach can appear as a complementary tool to give additional information on the sponge fitness. All the new developments in molecular biology and bioanalytical tools will open the way for a better comprehension on the complex field of sponge secondary metabolites.
Collapse
|
12
|
Banwell MG, Coster MJ, Hungerford NL, Garson MJ, Su S, Kotze AC, Munro MHG. 3,4'-Linked bis(piperidines) related to the haliclonacyclamine class of marine alkaloids: synthesis using crossed-aldol chemistry and preliminary biological evaluations. Org Biomol Chem 2011; 10:154-61. [PMID: 22068547 DOI: 10.1039/c1ob06418e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds 2-5, incorporating various elements of the 3,4'-bis(piperidine) core associated with the sponge-derived alkaloid haliclonacyclamine A (HA, 1), have been prepared through, inter alia, aldol-type reactions of N-substituted piperidin-4-ones and certain derivatives. Screening of these compounds in various assays, including an ecological one, reveals that compound 5 exhibits allelochemical properties similar to those associated with HA itself.
Collapse
Affiliation(s)
- Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Paul VJ, Ritson-Williams R, Sharp K. Marine chemical ecology in benthic environments. Nat Prod Rep 2010; 28:345-87. [PMID: 21125086 DOI: 10.1039/c0np00040j] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA.
| | | | | |
Collapse
|
16
|
Qian PY, Xu Y, Fusetani N. Natural products as antifouling compounds: recent progress and future perspectives. BIOFOULING 2010; 26:223-34. [PMID: 19960389 DOI: 10.1080/08927010903470815] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since early 2008, an increasing number of countries have ratified an international treaty to ban the application of antifouling (AF) coatings based on organotin compounds (eg tributyltin (TBT) and triphenyltin). As a result, the demand for environmentally friendly, non-toxic or low-toxicity AF compounds and technologies (green AF agents) has become an urgent reality. Marine coatings based on Cu2O and various other biocides have a negative impact on the environment and they must eventually be replaced by new, effective, and environmentally friendly AF compounds. This mini-review describes important AF compounds discovered from a variety of organisms from 2004 until mid 2009, and discusses recent and general trends in the discovery of AF compounds. Finally, a perspective on the future of AF compound development is presented. The discussion is aimed at updating scientists and engineers on the current challenges facing AF research.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- KAUST Global Partnership Program, Department of Biology, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
17
|
Mudianta IW, Garson MJ, Bernhardt PV. The Absolute Configurations of Haliclonacyclamines A and B Determined by X-Ray Crystallographic Analysis. Aust J Chem 2009. [DOI: 10.1071/ch09128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
X-Ray crystallography establishes that the marine alkaloids (–)-haliclonacyclamine A 1 and (+)-haliclonacyclamine B 2 each have the configuration C2 (R), C3 (R), C7 (R), and C9 (R). The alkaloids appear to be enantiomerically pure; this provides an insight into the stereochemical consequences of the biosynthetic pathway leading to these bioactive 3-alkylpiperidine alkaloids.
Collapse
|