1
|
Wojtczyk-Miaskowska A, Schlichtholz B. DNA damage and oxidative stress in long-lived aquatic organisms. DNA Repair (Amst) 2018; 69:14-23. [DOI: 10.1016/j.dnarep.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
|
2
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Wong KKW, Lane AC, Leung PTY, Thiyagarajan V. Response of larval barnacle proteome to CO(2)-driven seawater acidification. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:310-21. [PMID: 21831737 DOI: 10.1016/j.cbd.2011.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 12/30/2022]
Abstract
The majority of benthic marine invertebrates have a complex life cycle, during which the pelagic larvae select a suitable substrate, attach to it, and then metamorphose into benthic adults. Anthropogenic ocean acidification (OA) is postulated to affect larval metamorphic success through an altered protein expression pattern (proteome structure) and post-translational modifications. To test this hypothesis, larvae of an economically and ecologically important barnacle species Balanus amphitrite, were cultured from nauplius to the cyprid stage in the present (control) and in the projected elevated concentrations of CO(2) for the year 2100 (the OA treatment). Cyprid response to OA was analyzed at the total proteome level as well as two protein post-translational modification (phosphorylation and glycosylation) levels using a 2-DE based proteomic approach. The cyprid proteome showed OA-driven changes. Proteins that were differentially up or down regulated by OA come from three major groups, namely those related to energy-metabolism, respiration, and molecular chaperones, illustrating a potential strategy that the barnacle larvae may employ to tolerate OA stress. The differentially expressed proteins were tentatively identified as OA-responsive, effectively creating unique protein expression signatures for OA scenario of 2100. This study showed the promise of using a sentinel and non-model species to examine the impact of OA at the proteome level.
Collapse
Affiliation(s)
- Kelvin K W Wong
- Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong
| | | | | | | |
Collapse
|
4
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Tributyltin (TBT) and mitochondrial respiration in mussel digestive gland. Toxicol In Vitro 2011; 25:951-959. [PMID: 21396439 DOI: 10.1016/j.tiv.2011.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
The toxicity of organotins and especially tri-n-butyltin (TBT) on mitochondria is well known. However as far as we are aware, effects on mitochondrial respiration are unexplored in mollusks. In this work mitochondria isolated from the digestive gland of Mytilus galloprovincialis and susceptive to the classical respiratory chain inhibitors, were assayed in the presence of micromolar TBT concentrations to investigate mitochondrial respiratory activities. Intact and freeze-thawed mitochondria were used. TBT significantly inhibited oxygen consumption in the presence of glutamate/malate or succinate as substrates. Conversely cytochrome c oxidase activity (complex IV), assayed both polarographically and spectrophotometrically, was unaffected. The addition of 1,4-dithioerythritol (DTE) decreased the TBT-driven inhibition of complexes I and III. The TBT capability of covalent binding to thiol groups of mitochondrial proteins in a dose-dependent manner was confirmed by the aid of Ellman's reagent. Data strongly suggests that TBT may prevent the electron transfer from complexes I and III to downhill respiratory chain complexes by binding to critical SH residues.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Biochemistry G. Moruzzi, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia (BO), Italy
| | | | | | | | | |
Collapse
|
5
|
Ungvari Z, Ridgway I, Philipp EER, Campbell CM, McQuary P, Chow T, Coelho M, Didier ES, Gelino S, Holmbeck MA, Kim I, Levy E, Sosnowska D, Sonntag WE, Austad SN, Csiszar A. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A Biol Sci Med Sci 2011; 66:741-50. [PMID: 21486920 DOI: 10.1093/gerona/glr044] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We assess whether reactive oxygen species production and resistance to oxidative stress might be causally involved in the exceptional longevity exhibited by the ocean quahog Arctica islandica. We tested this hypothesis by comparing reactive oxygen species production, resistance to oxidative stress, antioxidant defenses, and protein damage elimination processes in long-lived A islandica with the shorter-lived hard clam, Mercenaria mercenaria. We compared baseline biochemical profiles, age-related changes, and responses to exposure to the oxidative stressor tert-butyl hydroperoxide (TBHP). Our data support the premise that extreme longevity in A islandica is associated with an attenuated cellular reactive oxygen species production. The observation of reduced protein carbonyl concentration in A islandica gill tissue compared with M mercenaria suggests that reduced reactive oxygen species production in long-living bivalves is associated with lower levels of accumulated macromolecular damage, suggesting cellular redox homeostasis may determine life span. Resistance to aging at the organismal level is often reflected in resistance to oxidative stressors at the cellular level. Following TBHP exposure, we observed not only an association between longevity and resistance to oxidative stress-induced mortality but also marked resistance to oxidative stress-induced cell death in the longer-living bivalves. Contrary to some expectations from the oxidative stress hypothesis, we observed that A islandica exhibited neither greater antioxidant capacities nor specific activities than in M mercenaria nor a more pronounced homeostatic antioxidant response following TBHP exposure. The study also failed to provide support for the exceptional longevity of A islandica being associated with enhanced protein recycling. Our findings demonstrate an association between longevity and resistance to oxidative stress-induced cell death in A islandica, consistent with the oxidative stress hypothesis of aging and provide justification for detailed evaluation of pathways involving repair of free radical-mediated macromolecular damage and regulation of apoptosis in the world's longest-living non-colonial animal.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. Am J Physiol Regul Integr Comp Physiol 2011; 301:R48-59. [PMID: 21451139 DOI: 10.1152/ajpregu.00542.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types (siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O(2)·s(-1)·mg protein(-1)). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O(2)·s(-1)·mg protein(-1)). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratoire de biologie intégrative, Département de biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada
| | | | | | | |
Collapse
|
7
|
Gagné F, Blaise C, Pellerin J, Fournier M, Gagnon C, Sherry J, Talbot A. Impacts of pollution in feral Mya arenaria populations: the effects of clam bed distance from the shore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5844-5854. [PMID: 19698974 DOI: 10.1016/j.scitotenv.2009.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 05/28/2023]
Abstract
This study examined the relationships between population characteristics and the expression of physiological biomarkers of stress in an intertidal clam population under pollution at sites differing in thermal history and coastline distance. The clam population metrics were age distribution, growth, condition factor, distance of the clam beds from the shore, and gonad development. Physiological biomarkers comprised biomarkers of defence such as superoxide dismutase, labile IIb metals in tissues, redox status of metallothioneins and glutathione S-transferase, of tissue damage such as lipid peroxidation and DNA strand breaks, of reproduction as determined by vitellogenin-like proteins and gonadosomatic index and immunocompetence such as phagocytosis and hemocyte viability. Age-related pigments were also examined to compare the physiological age of the clams with their chronological age. The results showed that all the above biomarkers were significantly affected at one of the two polluted sites at least. Distance from the shore was significantly correlated with most (81%) of the biomarkers examined. Clams collected at one polluted site were physiologically older than clams from the corresponding reference site. Canonical and adaptive regression (artificial neural networks) analyses found that the biomarkers measured in this study were able to predict the ecologically relevant endpoints. Biomarkers implicated in defense mechanisms, tissue damage and age-related pigments were most closely related to the clam population characteristics. Sensitivity analysis of the learning algorithm found that the following physiological and biochemical markers were the most predictive, in decreasing order, of clam population characteristics: glutathione S-transferase, phagocytosis, age pigments, lipid peroxidation in the gills, labile IIb metals and total MT levels. These biomarkers were affected by the distance of the clam beds from the shore, site quality (pollution) and reproduction activity.
Collapse
Affiliation(s)
- F Gagné
- Fluvial Ecosystem Research Section, Environment Canada, 105 McGill Street, Montréal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|