1
|
Liu Z, Zhang J, Ma A, Wang X, Sun Z, Cui W, Yuan C, Zhu C. Molecular characterization, expression analysis of 14-3-3 beta/alpha and the effect of RNA interference on ion transporter protein Na+-K+-ATPase, Na+–H+-exchanger and CFTR in turbot (Scophthalmus maximus). Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110458. [DOI: 10.1016/j.cbpb.2020.110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
2
|
Wang X, Ma G, Zhu H. Regulation of 14-3-3β/α gene expression in response to salinity, thermal, and bacterial stresses in Siberian sturgeon (Acipenser baeri). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:519-531. [PMID: 31848829 DOI: 10.1007/s10695-019-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The 14-3-3 proteins are a family of widely expressed acidic proteins, which are involved in the regulation of many biological processes of animals. However, no research regarding 14-3-3 has been described in sturgeon to date, one of the most primitive Actinopterygii species. Here, we identified the first 14-3-3 gene from Siberian sturgeon (Acipenser baeri), named Ab14-3-3β/α (GenBank Accession No. KY094076.1). The cDNA of Ab14-3-3β/α is 1212 bp in length, containing a 5'-untranslated region (UTR) of 82 bp, a 3'UTR of 392 bp, and an open reading frame (ORF) of 738 bp, encoding a polypeptide of 245 amino acids which contains a 14-3-3 homologs domain (PF00244). Phylogenetic analysis showed that the 14-3-3 gene product from Acipenser baeri is a counterpart of vertebrate 14-3-3β/α. The deduced Ab14-3-3β/α protein shares high identities of 46.5-95.5% with the homologs of other species. Ab14-3-3β/α mRNA was constitutively expressed in all examined tissues, with high expression levels in the blood and gill. Furthermore, the expression level of Ab14-3-3β/α mRNA increased significantly in the gill at 1 h under acute salinity shock by transfer of Siberian sturgeons from fresh water (FW) to 15 ppt. In fish subjected to a high temperature (31 °C), Ab14-3-3β/α showed a significant upregulation in the liver at 3 h compared with the control group (24 °C). A 4.85-fold increase of Ab14-3-3β/α expression in the spleen of Siberian sturgeon was observed at 24 h following Aeromonas hydrophila challenge. Collectively, these results indicated that Ab14-3-3β/α might play a certain role in sturgeon in response to some environmental stresses and bacterial challenge.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Guoqing Ma
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Hua Zhu
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China.
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China.
| |
Collapse
|
3
|
Zhang KQ, Wen HS, Li JF, Qi X, Fan HY, Zhang XY, Tian Y, Liu Y, Wang HL, Li Y. 14-3-3 gene family in spotted sea bass (Lateolabrax maculatus): Genome-wide identification, phylogenetic analysis and expression profiles after salinity stress. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:1-11. [PMID: 31082484 DOI: 10.1016/j.cbpa.2019.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation (14-3-3) proteins are a group of highly conserved homologous and heterologous proteins involved in a wild range of physiological processes, including the regulation of many molecular phenomena under different environmental salinities. In this study, we identified eleven 14-3-3 genes from the spotted sea bass (Lateolabrax maculatus) genome and transcriptomic databases and verified their identities by conducting phylogenetic, syntenic and gene structure analyses. The spotted sea bass 14-3-3 genes are highly conserved based on sequence alignment, conserved domains and motifs, and tertiary structural feature. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14-3-3 genes in gill of spotted sea bass under normal physiological conditions indicated that the expression level of 14-3-3 zeta was the highest among tested genes, followed by 14-3-3 theta. Furthermore, expression profiles of 14-3-3 genes in gill tissue (in vivo and in vitro) indicated that the 14-3-3 zeta and 14-3-3 theta genes were significantly induced by different environmental salinities in spotted sea bass, suggesting their potential involvement in response to salinity challenge. Our findings may lay the foundation for future functional studies on the 14-3-3 gene family in euryhaline teleosts.
Collapse
Affiliation(s)
- Kai-Qiang Zhang
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hai-Shen Wen
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Ji-Fang Li
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Xin Qi
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hong-Ying Fan
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Xiao-Yan Zhang
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yuan Tian
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yang Liu
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hao-Long Wang
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yun Li
- College of Fisheries, Ocean University of China, Qingdao, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China.
| |
Collapse
|
5
|
Bozdarov J, Sherry JP, Duncker BP, Bols NC, Dixon B. The rad1 gene in Rainbow Trout (Oncorhynchus mykiss) is highly conserved and may express proteins from non-canonical spliced isoforms. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:16-23. [PMID: 22985532 DOI: 10.1016/j.cbpc.2012.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/26/2022]
Abstract
Cell-cycle checkpoint proteins maintain genomic integrity by sensing damaged DNA and initiating DNA repair or apoptosis. RAD1 is a checkpoint protein involved in the sensing of damaged DNA and is a part of the 9-1-1 complex. In this project rainbow trout rad1 (rtrad1) was cloned, sequenced, expressed as a recombinant protein and anti-rtRAD1 antibodies were developed. RAD1 protein levels were characterized in various rainbow trout tissues. It was determined that an 840 bp open-reading frame encodes 279 aa with a predicted protein size of 31 kDa. The rtRAD1 amino-acid sequence is highly conserved and contains conserved exonuclease and leucine zipper domains. RT-PCR was used to identify three non-canonical splice variants of rtrad1, two of which are capable of forming functional proteins. The rad1 splice variant that encodes an 18 kDa protein appears to be abundant in rainbow trout spleen, heart and gill tissue and in the RTgill-W1 cell-line. Based on the genomic rtrad1 sequence the splice variants contain only partial exons which are consistent with the splicing of rad1 variants in mammals. This is the first time that rad1 has been fully characterized in a fish species.
Collapse
Affiliation(s)
- Johny Bozdarov
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Wanna W, Thipwong J, Mahakaew W, Phongdara A. Identification and expression analysis of two splice variants of the 14-3-3 epsilon from Litopenaeus Vannamei during WSSV infections. Mol Biol Rep 2011; 39:5487-93. [PMID: 22179749 DOI: 10.1007/s11033-011-1351-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/09/2011] [Indexed: 02/01/2023]
Abstract
The 14-3-3 epsilon (14-3-3ε) is a member of the 14-3-3-protein family claimed to play important roles in many biological processes. In this study, two alternative 14-3-3 epsilon mRNAs, designated as 14-3-3EL and 14-3-3ES were identified from the shrimp L. vannamei. The 14-3-3EL isoform contains an insertion of 48 nucleotides by intron retention in the pre-mRNA of 14-3-3ε. While the 14-3-3ES occurred after being fully spliced. Using the yeast two hybrid method, the pattern of dimer formation by the two alternative 14-3-3ε isoforms revealed that the shrimp 14-3-3ε formed both homodimers and heterodimers. Both 14-3-3ε transcript variants were constitutively expressed in all shrimp tissues tested but the level of the 14-3-3ES isoform was always lower. However, after white spot syndrome virus (WSSV) infection, the expression level of the two transcript variants changed. At 48 h after infection, expression of 14-3-3EL mRNA increased significantly in the gill and muscle tissue whereas the expression 14-3-3ES increased only in muscle. It was of interest that in the lymphoid organ, there was a significant down-expression of both transcript variants. From these results we suggest that 14-3-3EL and 14-3-3ES might be related to different cellular processes that are modulated during virus infection.
Collapse
Affiliation(s)
- Warapond Wanna
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| | | | | | | |
Collapse
|
7
|
Aitken A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Semin Cell Dev Biol 2011; 22:673-80. [PMID: 21864699 DOI: 10.1016/j.semcdb.2011.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
Abstract
14-3-3 is now well established as a family of dimeric proteins that can modulate interaction between proteins involved in a wide range of functions. In many cases, these proteins show a distinct preference for a particular isoform(s) of 14-3-3 and in many cases a specific repertoire of dimer formation influences the particular proteins that 14-3-3 interact. Well over 200 proteins have been shown to interact with 14-3-3. The purpose of this review is to give an overview of the recently identified post-translational modifications of 14-3-3 isoforms and how this regulates function, interaction, specificity of dimerisation between isoforms and cellular location of target proteins. The association between 14-3-3 and its targets usually involves phosphorylation of the interacting protein which has been the subject of many reviews and discussion of this is included in other reviews in this series. However, it is now realised that in some cases the phosphorylation and a number of other, novel covalent modifications of 14-3-3 isoforms may modulate interaction and dimerisation of 14-3-3. Since this aspect is now emerging to be of major importance in the mechanism of regulation by 14-3-3 isoforms and has not been the focus of previous reviews, this will be detailed here.
Collapse
Affiliation(s)
- Alastair Aitken
- University of Edinburgh, School of Biological Sciences, Darwin Building, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
8
|
Kaeodee M, Pongsomboon S, Tassanakajon A. Expression analysis and response of Penaeus monodon 14-3-3 genes to salinity stress. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:244-51. [DOI: 10.1016/j.cbpb.2011.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|