1
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Lisachov A, Dedukh D, Simanovsky S, Panthum T, Singchat W, Srikulnath K. Spaghetti Connections: Synaptonemal Complexes as a Tool to Explore Chromosome Structure, Evolution, and Meiotic Behavior in Fish. Cytogenet Genome Res 2024; 164:1-15. [PMID: 38452741 DOI: 10.1159/000538238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Zhu J, Wang Y, Chen C, Ji L, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Identification of Sex-Specific Markers and Candidate Genes Using WGS Sequencing Reveals a ZW-Type Sex-Determination System in the Chinese Soft-Shell Turtle ( Pelodiscus sinensis). Int J Mol Sci 2024; 25:819. [PMID: 38255893 PMCID: PMC10815769 DOI: 10.3390/ijms25020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Male and female Chinese soft-shelled turtles (Pelodiscus sinensis) have sex-dimorphic growth patterns, and males have higher commercial value because of their larger size and thicker calipash. Thus, developing sex-specific markers is beneficial to studies on all-male breeding in P. sinensis. Here, we developed an accurate and efficient workflow for the screening of sex-specific sequences with ZW or XY sex determination systems. Based on this workflow, female and male P. sinensis reference genomes of 2.23 Gb and 2.26 Gb were obtained using de novo assembly. After aligning and filtering, 4.01 Mb female-specific sequences were finally identified. Subsequently, the seven developed sex-specific primer pairs were 100% accurate in preliminary, population, and embryonic validation. The presence and absence of bands for the primers of P44, P45, P66, P67, P68, and P69, as well as two and one bands for the PB1 primer, indicate that the embryos are genetically female and male, respectively. NR and functional annotations identified several sex-determining candidate genes and related pathways, including Ran, Eif4et, and Crkl genes, and the insulin signaling pathway and the cAMP signaling pathway, respectively. Collectively, our results reveal that a ZW-type sex-determination system is present in P. sinensis and provide novel insights for the screening of sex-specific markers, sex-control breeding, and the studies of the sex determination mechanism of P. sinensis.
Collapse
Affiliation(s)
- Junxian Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xinping Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Wei Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| |
Collapse
|
4
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Wen M, Pan Q, Larson W, Eché C, Guiguen Y. Characterization of the sex determining region of channel catfish (Ictalurus punctatus) and development of a sex-genotyping test. Gene X 2022; 850:146933. [DOI: 10.1016/j.gene.2022.146933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
6
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. Int J Mol Sci 2022; 23:ijms23147636. [PMID: 35886982 PMCID: PMC9316214 DOI: 10.3390/ijms23147636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Oreochromis niloticus has been used as a reference genome for studies of tilapia sex determination (SD) revealing segregating genetic loci on linkage groups (LGs) 1, 3, and 23. The master key regulator genes (MKR) underlying the SD regions on LGs 3 and 23 have been already found. To identify the MKR in fish that segregate for the LG1 XX/XY SD-system, we applied short variant discovery within the sequence reads of the genomic libraries of the Amherst hybrid stock, Coptodon zillii and Sarotherodon galilaeus, which were aligned to a 3-Mbp-region of the O. aureus genome. We obtained 66,372 variants of which six were concordant with the XX/XY model of SD and were conserved across these species, disclosing the male specific figla-like gene. We further validated this observation in O. mossambicus and in the Chitralada hybrid stock. Genome alignment of the 1252-bp transcript showed that the figla-like gene’s size was 2664 bp, and that its three exons were capable of encoding 99 amino acids including a 45-amino-acid basic helix–loop–helix domain that is typical of the ovary development regulator—factor-in-the-germline-alpha (FIGLA). In Amherst gonads, the figla-like gene was exclusively expressed in testes. Thus, the figla-like genomic presence determines male fate by interrupting the female developmental program. This indicates that the figla-like gene is the long-sought SD MKR on LG1.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shay Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Correspondence:
| |
Collapse
|
7
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Tao W, Xu L, Zhao L, Zhu Z, Wu X, Min Q, Wang D, Zhou Q. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol Ecol Resour 2020; 21:543-560. [PMID: 33035394 DOI: 10.1111/1755-0998.13273] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Tilapias are one of the most farmed fishes that are coined as "aquatic chicken" by the food industry. Nile tilapia and blue tilapia exhibit very recent transition of sex chromosome systems since their divergence approximately five million years ago, making them a great model for elucidating the molecular and evolutionary mechanisms of sex chromosome turnovers. Studies of their sex-determining pathways are also critical for developing genetic sex control in aquaculture. We report here the newly produced genomes of Nile tilapia and blue tilapia that integrate long-read sequencing and chromatin conformation data. The two nearly complete genomes have anchored over 97% of the sequences into linkage groups (LGs), and assembled majorities of complex repetitive regions including telomeres, centromeres and rDNA clusters. In particular, we inferred two episodes of repeat expansion at LG3 respectively in the ancestor of cichlids and that of tilapias. The consequential large heterochromatic region concentrated at one end of LG3 comprises tandem arrays of mRNA and small RNA genes, among which we have identified a candidate female determining gene Paics in blue tilapia. Paics shows female-specific patterns of single-nucleotide variants, copy numbers and expression patterns in gonads during early gonadogenesis. Our work provides a very important genomic resource for functional studies of cichlids, and suggested that unequal distribution of repeat content that impacts the local recombination rate might make some chromosomes more likely to become sex chromosomes.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Lin Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zexian Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Qianwen Min
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.,Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia. Genes (Basel) 2020; 11:genes11091017. [PMID: 32872430 PMCID: PMC7563666 DOI: 10.3390/genes11091017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.
Collapse
|
11
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Gammerdinger WJ, Conte MA, Sandkam BA, Ziegelbecker A, Koblmüller S, Kocher TD. Novel Sex Chromosomes in 3 Cichlid Fishes from Lake Tanganyika. J Hered 2019; 109:489-500. [PMID: 29444291 DOI: 10.1093/jhered/esy003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
African cichlids are well known for their adaptive radiations, but it is now apparent that they also harbor an extraordinary diversity of sex chromosome systems. In this study, we sequenced pools of males and females from species in 3 different genera of cichlids from Lake Tanganyika. We then searched for regions that were differentiated following the patterns expected for sex chromosomes. We report 2 novel sex chromosomes systems, an XY system on LG19 in Tropheus sp. "black" and a ZW system on LG7 in Hemibates stenosoma. We also identify a ZW system on LG5 in Cyprichromis leptosoma that may be convergent with a system previously described in Lake Malawi cichlids. Our data also identify candidate single nucleotide polymorphisms for the blue/yellow tail color polymorphism observed among male C. leptosoma.
Collapse
Affiliation(s)
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
13
|
Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Sci Rep 2019; 9:14450. [PMID: 31595011 PMCID: PMC6783451 DOI: 10.1038/s41598-019-50978-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
The Pacific bluefin tuna, Thunnus orientalis, is a highly migratory species that is widely distributed in the North Pacific Ocean. Like other marine species, T. orientalis has no external sexual dimorphism; thus, identifying sex-specific variants from whole genome sequence data is a useful approach to develop an effective sex identification method. Here, we report an improved draft genome of T. orientalis and male-specific DNA markers. Combining PacBio long reads and Illumina short reads sufficiently improved genome assembly, with a 38-fold increase in scaffold contiguity (to 444 scaffolds) compared to the first published draft genome. Through analysing re-sequence data of 15 males and 16 females, 250 male-specific SNPs were identified from more than 30 million polymorphisms. All male-specific variants were male-heterozygous, suggesting that T. orientalis has a male heterogametic sex-determination system. The largest linkage disequilibrium block (3,174 bp on scaffold_064) contained 51 male-specific variants. PCR primers and a PCR-based sex identification assay were developed using these male-specific variants. The sex of 115 individuals (56 males and 59 females; sex was diagnosed by visual examination of the gonads) was identified with high accuracy using the assay. This easy, accurate, and practical technique facilitates the control of sex ratios in tuna farms. Furthermore, this method could be used to estimate the sex ratio and/or the sex-specific growth rate of natural populations.
Collapse
|
14
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
15
|
Sissao R, D'Cotta H, Baroiller JF, Toguyeni A. Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia Oreochromis niloticus. PeerJ 2019; 7:e7709. [PMID: 31579600 PMCID: PMC6754722 DOI: 10.7717/peerj.7709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.
Collapse
Affiliation(s)
- Rokyatou Sissao
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Institut de l'environnement et de recherches agricoles, Centre national de la recherche scientifique et technologique, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| | - Helena D'Cotta
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Jean-François Baroiller
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Aboubacar Toguyeni
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
16
|
Zhang S, Zhang X, Chen X, Xu T, Wang M, Qin Q, Zhong L, Jiang H, Zhu X, Liu H, Shao J, Zhu Z, Shi Q, Bian W, You X. Construction of a High-Density Linkage Map and QTL Fine Mapping for Growth- and Sex-Related Traits in Channel Catfish ( Ictalurus punctatus). Front Genet 2019; 10:251. [PMID: 30984241 PMCID: PMC6448050 DOI: 10.3389/fgene.2019.00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
A high-density genetic linkage map is of particular importance in the fine mapping for important economic traits and whole genome assembly in aquaculture species. The channel catfish (Ictalurus punctatus), a species native to North America, is one of the most important commercial freshwater fish in the world. Outside of the United States, China has become the major producer and consumer of channel catfish after experiencing rapid development in the past three decades. In this study, based on restriction site associated DNA sequencing (RAD-seq), a high-density genetic linkage map of channel catfish was constructed by using single nucleotide polymorphisms (SNPs) in a F1 family composed of 156 offspring and their two parental individuals. A total of 4,768 SNPs were assigned to 29 linkage groups (LGs), and the length of the linkage map reached 2,480.25 centiMorgans (cM) with an average distance of 0.55 cM between loci. Based on this genetic linkage map, 223 genomic scaffolds were anchored to the 29 LGs of channel catfish, and a total length of 704.66 Mb was assembled. Quantitative trait locus (QTL) mapping and genome-wide association analysis identified 10 QTLs of sex-related and six QTLs of growth-related traits at LG17 and LG28, respectively. Candidate genes associated with sex dimorphism, including spata2, spata5, sf3, zbtb38, and fox, were identified within QTL intervals on the LG17. A sex-linked marker with simple sequence repeats (SSR) in zbtb38 gene of the LG17 was validated for practical verification of sex in the channel catfish. Thus, the LG17 was considered as a sex-related LG. Potential growth-related genes were also identified, including important regulators such as megf9, npffr1, and gas1. In a word, we constructed the high-density genetic linkage map and developed the sex-linked marker in channel catfish, which are important genetic resources for future marker-assisted selection (MAS) of this economically important teleost.
Collapse
Affiliation(s)
- Shiyong Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Qin Qin
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Hucheng Jiang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xiaohua Zhu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Junjie Shao
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Zhifei Zhu
- BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
17
|
Gammerdinger WJ, Kocher TD. Unusual Diversity of Sex Chromosomes in African Cichlid Fishes. Genes (Basel) 2018; 9:E480. [PMID: 30287777 PMCID: PMC6210639 DOI: 10.3390/genes9100480] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
African cichlids display a remarkable assortment of jaw morphologies, pigmentation patterns, and mating behaviors. In addition to this previously documented diversity, recent studies have documented a rich diversity of sex chromosomes within these fishes. Here we review the known sex-determination network within vertebrates, and the extraordinary number of sex chromosomes systems segregating in African cichlids. We also propose a model for understanding the unusual number of sex chromosome systems within this clade.
Collapse
Affiliation(s)
- William J Gammerdinger
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
An NGS-based approach for the identification of sex-specific markers in snakehead ( Channa argus). Oncotarget 2017; 8:98733-98744. [PMID: 29228723 PMCID: PMC5716763 DOI: 10.18632/oncotarget.21924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
We described a next generation sequencing (NGS)-based approach to identify sex-specific markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the snakehead (Channa argus), which is economically important freshwater fish in China. Males grow faster than females, and there is significant interest in developing methods to skew breeding towards all-males to increase biomass yields. NGS was conducted on DNAs of individual female and male, the male reads were spitted into 60 bp K-mers and aligned to the female reference genome assembled by female reads, unaligned male K-mers-60 were kept in next filter process. Meanwhile, DNA sample of 48 females was pooled and sequenced, this data was further used to filter out the previous unaligned male K-mers-60. Hence, numbers of candidate Y chromosome-specific sequences were screened out, their sex-specificity were validated in wild snakeheads through PCR amplification. Finally, three Y chromosome-specific fragments (Contig-275834, Contig-359642, and Contig-418354) were identified, and specific primers were obtained to distinguish the sex of snakehead. Additionally, a pair of primers of Contig-275834 (275834X/Y-F and 275834X/Y-R) was exploited to distinguish XX females, XY males, and YY super-males, whose amplification products of different lengths were produced for different sexes. Therefore, our work demonstrated the ability of NGS data in identification of sex-specific markers, and the pipeline adopted in our study could be applied in any species of sex differentiation. Furthermore, the sex-specific markers have tremendous potential for improving the efficiency of all-male breeding practices in snakehead.
Collapse
|
19
|
Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 2017; 18:341. [PMID: 28464822 PMCID: PMC5414186 DOI: 10.1186/s12864-017-3723-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tilapias are the second most farmed fishes in the world and a sustainable source of food. Like many other fish, tilapias are sexually dimorphic and sex is a commercially important trait in these fish. In this study, we developed a significantly improved assembly of the tilapia genome using the latest genome sequencing methods and show how it improves the characterization of two sex determination regions in two tilapia species. RESULTS A homozygous clonal XX female Nile tilapia (Oreochromis niloticus) was sequenced to 44X coverage using Pacific Biosciences (PacBio) SMRT sequencing. Dozens of candidate de novo assemblies were generated and an optimal assembly (contig NG50 of 3.3Mbp) was selected using principal component analysis of likelihood scores calculated from several paired-end sequencing libraries. Comparison of the new assembly to the previous O. niloticus genome assembly reveals that recently duplicated portions of the genome are now well represented. The overall number of genes in the new assembly increased by 27.3%, including a 67% increase in pseudogenes. The new tilapia genome assembly correctly represents two recent vasa gene duplication events that have been verified with BAC sequencing. At total of 146Mbp of additional transposable element sequence are now assembled, a large proportion of which are recent insertions. Large centromeric satellite repeats are assembled and annotated in cichlid fish for the first time. Finally, the new assembly identifies the long-range structure of both a ~9Mbp XY sex determination region on LG1 in O. niloticus, and a ~50Mbp WZ sex determination region on LG3 in the related species O. aureus. CONCLUSIONS This study highlights the use of long read sequencing to correctly assemble recent duplications and to characterize repeat-filled regions of the genome. The study serves as an example of the need for high quality genome assemblies and provides a framework for identifying sex determining genes in tilapia and related fish species.
Collapse
Affiliation(s)
- Matthew A. Conte
- Department of Biology, University of Maryland, 20742 College Park, MD USA
| | | | - Kerry L. Bartie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - David J. Penman
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, 20742 College Park, MD USA
| |
Collapse
|
20
|
Zhu H, Liu Z, Lu M, Gao F, Ke X, Ma D, Huang Z, Cao J, Wang M. Screening and identification of a microsatellite marker associated with sex in Wami tilapia, Oreochromis urolepis hornorum. J Genet 2017; 95:283-9. [PMID: 27350670 DOI: 10.1007/s12041-016-0653-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P <0.001) with the phenotypic sex in the experimental population, nine genotypes were detected in both sexes. Only 99-bp allele was detected in the female samples, while 141, 149 and 157-bp alleles were present in both male and female samples. UNH168 was localized by fluorescence in situ hybridization (FISH) on the long arm of the largest tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.
Collapse
Affiliation(s)
- Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pan ZJ, Li XY, Zhou FJ, Qiang XG, Gui JF. Identification of Sex-Specific Markers Reveals Male Heterogametic Sex Determination in Pseudobagrus ussuriensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:441-451. [PMID: 25981673 DOI: 10.1007/s10126-015-9631-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Comprehending sex determination mechanism is a first step for developing sex control breeding biotechnologies in fish. Pseudobagrus ussuriensis, one of bagrid catfishes in Bagridae, had been observed to have about threefold size dimorphism between males and females, but its sex determination mechanism had been unknown. In this study, we firstly used the amplified fragment length polymorphism (AFLP)-based screening approach to isolate a male-specific DNA fragment and thereby identified a 10,569 bp of male-specific sequence and a 10,365 bp of female-related sequence by genome walking in the bagrid catfish, in which a substantial genetic differentiation with 96.35 % nucleotide identity was revealed between them. Subsequently, a high differentiating region of 650 bp with only 70.26 % nucleotide identity was found from the corresponding two sequences, and three primer pairs of male-specific marker, male and female-shared marker with different length products in male and female genomes, and female-related marker were designed. Significantly, when these markers were used to identify genetic sex of the bagrid catfish, only male individuals was detected to amplify the male-specific marker fragment, and female-related marker was discovered to produce dosage association in females and in males. Our current data provide significant genetic evidence that P. ussuriensis has heterogametic XY sex chromosomes in males and homogametic XX sex chromosomes in females. Therefore, sex determination mechanism of P. ussuriensis is male heterogametic XX/XY system.
Collapse
Affiliation(s)
- Zheng-Jun Pan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
22
|
Chen X, Mei J, Wu J, Jing J, Ma W, Zhang J, Dan C, Wang W, Gui JF. A comprehensive transcriptome provides candidate genes for sex determination/differentiation and SSR/SNP markers in yellow catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:190-198. [PMID: 25403497 DOI: 10.1007/s10126-014-9607-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
Sex dimorphic growth pattern has significant theory and application implications in fish. Recently, a Y- and X-specific allele marker-assisted sex control technique has been developed for mass production of all-male population in yellow catfish (Pelteobagrus fulvidraco), but the genetic information for sex determination and sex control breeding has remained unclear. Here, we attempted to provide the first insight into a comprehensive transcriptome covering multiple tissues from XX females, XY males, and YY super-males of yellow catfish by using 454 GS-FLX platform, for a better assembly and gene coverage. A total of 1,202,933 high quality reads (about 540 Mbp) were obtained and assembled into 28,297 contigs and 141,951 singletons. BLASTX searches against the NCBI non-redundant protein database (nr) led a total of 52,564 unique sequences including 18,748 contigs and 33,816 singletons to match 25,669 known or predicted unique proteins. All of them with annotated function were categorized by gene ontology (GO) analysis, and 712 were assigned to reproduction and reproductive process. Some potential genes relevant to reproductive system including steroid hormone biosynthesis and GnRH (gonadotropin-releasing hormone) signaling pathway were further identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis; and at least 21 sex determination and differentiation-related genes, such as Dmrt1, Sox9a/b, Cyp19b, WT1, and AMH were identified and characterized. Additionally, a total of 82,794 simple sequence repeats (SSRs), 26,450 single nucleotide polymorphisms (SNPs), and 4,145 insertions and deletions (INDELs) were revealed from the transcriptome data. Therefore, the current transcriptome resources highlight further studies on sex-control breeding in yellow catfish and will benefit future studies on reproduction and sex determination in teleost fish.
Collapse
Affiliation(s)
- Xin Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mei J, Gui JF. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. SCIENCE CHINA-LIFE SCIENCES 2015; 58:124-36. [PMID: 25563981 DOI: 10.1007/s11427-014-4797-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
24
|
A syntenic region conserved from fish to Mammalian x chromosome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:873935. [PMID: 25506037 PMCID: PMC4254068 DOI: 10.1155/2014/873935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/29/2022]
Abstract
Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.
Collapse
|
25
|
Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genomics 2014; 15:975. [PMID: 25404257 PMCID: PMC4251933 DOI: 10.1186/1471-2164-15-975] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
Background Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad. Results We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region. Conclusions This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-975) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Henning F, Meyer A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genomics Hum Genet 2014; 15:417-41. [PMID: 24898042 DOI: 10.1146/annurev-genom-090413-025412] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With more than 1,500 species, cichlid fishes provide textbook examples of recent and diverse adaptive radiations, rapid rates of speciation, and the parallel evolution of adaptive phenotypes among both recently and distantly related lineages. This extraordinary diversity has attracted considerable interest from researchers across several biological disciplines. Their broad phenotypic variation coupled with recent divergence makes cichlids an ideal model system for understanding speciation, adaptation, and phenotypic diversification. Genetic mapping, genome-wide analyses, and genome projects have flourished in the past decade and have added new insights on the question of why there are so many cichlids. These recent findings also show that the sharing of older DNA polymorphisms is extensive and suggest that linage sorting is incomplete and that adaptive introgression played a role in the African radiation. Here, we review the results of genetic and genomic research on cichlids in the past decade and suggest some potential avenues to further exploit the potential of the cichlid model system to provide a better understanding of the genomics of adaptation and speciation.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
| | | |
Collapse
|
27
|
Gene mapping of 28S rDNA sites in allotriploid Cobitis females (Pisces: Cobitidae) from a diploid-polyploid population. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0339-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kuroiwa A, Terai Y, Kobayashi N, Yoshida K, Suzuki M, Nakanishi A, Matsuda Y, Watanabe M, Okada N. Construction of chromosome markers from the Lake Victoria cichlid Paralabidochromis chilotes and their application to comparative mapping. Cytogenet Genome Res 2013; 142:112-20. [PMID: 24217467 DOI: 10.1159/000356128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Cichlid fishes in the African Great Lakes are known as a spectacular example of adaptive radiation in vertebrates. Four linkage maps have been constructed to identify the genes responsible for adaptation and speciation, and the genetic linkages of those genes are assumed to play an important role during adaptive evolution. However, it is difficult to analyze such linkages because the linkage groups of one species do not match well with those of the other species. Chromosome markers are a powerful tool for the direct identification of linkage homology between different species. We used information about the linkage map of the Lake Malawi cichlid (Labeotropheus fuelleborni/Metriaclima zebra) to isolate bacterial artificial chromosome (BAC) clones from the BAC library of Paralabidochromis chilotes, Lake Victoria. We identified 18 of 22 P. chilotes chromosomes by single- and multi-color BAC fluorescence in situ hybridization using 19 BAC clones. Comparative mapping with the chromosome markers of P. chilotes in Astatotilapia burtoni (2n = 40) from Lake Tanganyika revealed the chromosome rearrangements that have occurred in this lineage. These chromosome markers will be useful for delineating the process of genome and chromosome evolution in African species.
Collapse
Affiliation(s)
- A Kuroiwa
- Laboratory of Animal Cytogenetics, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dan C, Mei J, Wang D, Gui JF. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci 2013; 9:1043-9. [PMID: 24250249 PMCID: PMC3831117 DOI: 10.7150/ijbs.7203] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/18/2013] [Indexed: 11/09/2022] Open
Abstract
Pf62-Y and Pf62-X is a pair of allelic Y chromosome-linked and X chromosome-linked markers, and have been used to identify YY super-males, XY males and XX females for commercial production of all-male populations in yellow catfish (Pelteobagrus fulvidraco). However, the SCAR primers used previously have only two nucleotide difference, which restricts the wide utility because of nucleotide polymorphism. In this study, a continuous 8102 bp Pf62-Y sequence and a 5362 bp Pf62-X sequence have been cloned by genome walking, and significant genetic differentiation has been revealed between the corresponding X and Y chromosome allele sequences. Moreover, three pairs of primers were designed to efficiently identify YY super-males, XY males and XX females in an artificial breeding population, and to distinguish XY males and XX females in various wild populations. Together, the three new sex-specific genetic markers develop a highly stable and efficient method for genetic sex identification and sex control application in sustainable aquaculture of all-male yellow catfish.
Collapse
Affiliation(s)
- Cheng Dan
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
30
|
Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) Using RAD sequencing. PLoS One 2013; 8:e68389. [PMID: 23874606 PMCID: PMC3708939 DOI: 10.1371/journal.pone.0068389] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/29/2013] [Indexed: 01/17/2023] Open
Abstract
Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the "female" genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the "female" genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture.
Collapse
|
31
|
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 2013; 8:e63604. [PMID: 23658843 PMCID: PMC3643912 DOI: 10.1371/journal.pone.0063604] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/06/2013] [Indexed: 12/12/2022] Open
Abstract
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina Hiseq(TM) technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Shijie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Baofeng Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
32
|
Xu D, Lou B, Xu H, Li S, Geng Z. Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:221-229. [PMID: 22855400 DOI: 10.1007/s10126-012-9480-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Sex-specific DNA markers applicable were very useful for elucidating the sex-determination mechanism and sex control in fishes. In the present study, amplified fragment-length polymorphism (AFLP) approach with 144 primer combinations was employed to identify sex-specific markers in the rock bream. Four male-specific AFLP fragments were identified which were designated as Opl286, Opl237, Opl422, and Opl228. Further sequence analysis of the sex markers' genomic region revealed subtle differences between the males and females. We identified four male-specific single-nucleotide polymorphisms (SNPs) and a deletion of 8 bp in marker Opl286, six male-specific SNPs in marker Opl237, three male-specific SNPs in marker Opl422, and eight male-specific SNPs and 1 bp inversions in marker Opl228. Specific primers were designed based on the nucleotide variation in the sequences to develop a simple polymerase chain reaction method for identifying the genetic sex of rock bream. As a result, three out of the four male-specific markers were converted into SNP markers. The male-specific AFLP markers and AFLP-derived SNP markers were tested in 100 individuals collected from three locations around the coast of Zhoushan, yielding reproducible sex identification. These male-specific DNA markers are a useful tool for the identification of the sex-determining locus in rock bream and for guiding artificial breeding programs.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, 316100 Zhoushan, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Nie H, Li Q, Zhao X, Kong L. Genetic positioning of centromeres through half-tetrad analysis in gynogenetic diploid families of the Zhikong scallop (Chlamys farreri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:1-15. [PMID: 22538933 DOI: 10.1007/s10126-012-9454-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/03/2012] [Indexed: 05/10/2023]
Abstract
Centromere mapping is a powerful tool for improving linkage maps, investigating crossover events, and understanding chiasma interference during meiosis. Ninety microsatellite markers selected across all linkage groups (LGs) from a previous Chlamys farreri genetic map were studied in three artificially induced meiogynogenetic families for centromere mapping by half-tetrad analysis. Inheritance analyses showed that all 90 microsatellite loci conformed to Mendelian inheritance in the control crosses, while 4.4 % of the microsatellite loci showed segregation departures from an expected 1:1 ratio of two homozygote classes in meiogynogenetic progeny. The second division segregation frequency (y) of the microsatellites ranged from 0.033 to 0.778 with a mean of 0.332, confirming the occurrence of partial chiasma interference in this species. Heterogeneity of y is observed in one of 42 cases in which markers were typed in more than one family, suggesting variation in gene-centromere recombination among families. Centromere location was mostly in accordance with the C. farreri karyotype, but differences in marker order between linkage and centromere maps occurred. Overall, this study makes the genetic linkage map a more complete and informative tool for genomic studies and it will also facilitate future research of the structure and function of the scallop centromeres.
Collapse
Affiliation(s)
- Hongtao Nie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
34
|
Cnaani A. The Tilapias' Chromosomes Influencing Sex Determination. Cytogenet Genome Res 2013; 141:195-205. [DOI: 10.1159/000355304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Renshaw MA, Giresi M, Adams JO. Microsatellite fragment analysis using the ABI PRISM ® 377 DNA sequencer. Methods Mol Biol 2013; 1006:181-196. [PMID: 23546792 DOI: 10.1007/978-1-62703-389-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ABI PRISM (®) 377 DNA Sequencer is used for a variety of microsatellite-based research. The platform provides researchers with a cost-effective means for high-throughput genotyping, which can be further optimized by multiplexing microsatellite loci or by using a tail-labeling approach to screen large sets of markers. The goals of this chapter are to present a protocol for performing microsatellite-based analyses on the ABI 377 and to provide researchers with information on how to troubleshoot common issues associated with running the ABI 377 sequencers.
Collapse
Affiliation(s)
- Mark A Renshaw
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | |
Collapse
|
36
|
Mazzuchelli J, Kocher TD, Yang F, Martins C. Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics 2012; 13:463. [PMID: 22958299 PMCID: PMC3463429 DOI: 10.1186/1471-2164-13-463] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.
Collapse
Affiliation(s)
- Juliana Mazzuchelli
- Department of Morphology, Bioscience Institute, UNESP - São Paulo State University, 18618-970, Botucatu, SP, Brazil
| | | | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Cesar Martins
- Department of Morphology, Bioscience Institute, UNESP - São Paulo State University, 18618-970, Botucatu, SP, Brazil
| |
Collapse
|
37
|
Lühmann LM, Knorr C, Hörstgen-Schwark G, Wessels S. First evidence for family-specific QTL for temperature-dependent sex reversal in Nile tilapia (Oreochromis niloticus). Sex Dev 2012; 6:247-56. [PMID: 22797471 DOI: 10.1159/000339705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
This study for the first time screens microsatellite markers for associations with the temperature-dependent sex of Oreochromis niloticus. Previous studies revealed markers on linkage groups (LG) 1, 3, and 23 to be linked to the phenotypic sex of Oreochromis spp. at normal rearing temperatures. Moreover, candidate genes for sex determination and differentiation have been mapped to these linkage groups. Here, 6 families of a temperature-treated genetically all-female (XX) F(1)-population were genotyped for 21 microsatellites on the 3 LGs. No population-wide QTL (quantitative trait loci) or marker trait associations could be detected. However, family-specific QTL were found on LG 1 flanked by UNH995 and UNH104, on LG 3 at the position of GM213, and on LG 23 next to GM283. Moreover, family-specific single marker associations for UNH995 and UNH104 on LG 1, GM213 on LG 3, as well as for UNH898 and GM283 on LG 23 were detected. Yet, marker trait associations could not explain the temperature-dependent sex of all fish in the respective families. The molecular cue for the temperature-dependent sex in Nile tilapia might partially coincide with allelic variants at major and minor genetic sex determining factors. Moreover, additional QTL contributing to variable liabilities towards temperature might persist on other LGs.
Collapse
Affiliation(s)
- L M Lühmann
- Department of Animal Sciences, Division of Aquaculture and Water Ecology, Göttingen, Germany.
| | | | | | | |
Collapse
|
38
|
Van Bers NEM, Crooijmans RPMA, Groenen MAM, Dibbits BW, Komen J. SNP marker detection and genotyping in tilapia. Mol Ecol Resour 2012; 12:932-41. [PMID: 22524158 DOI: 10.1111/j.1755-0998.2012.03144.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288-305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei's genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.
Collapse
Affiliation(s)
- N E M Van Bers
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, Wageningen, 6700 AH, The Netherlands
| | | | | | | | | |
Collapse
|