1
|
Zhou L, Feng Y, Wang F, Dong X, Jiang L, Liu C, Zhao Q, Li K. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development. Sci Rep 2018; 8:1834. [PMID: 29382876 PMCID: PMC5789895 DOI: 10.1038/s41598-018-20039-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023] Open
Abstract
Production of all-male and sterile fish may not only substantially improve yield but also be crucial for the application of genome modified species in aquaculture. Previously, it was reported that the fish lacking primordial germ cells (PGCs) becomes infertile, and nitroreductase, an enzyme converting non-toxic metronidazole (MTZ) into toxic metabolites, induces targeted toxicity to kill the cells expressing it. In this study, we generated a transgenic zebrafish line of Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) in which the NfsB nitroreductase is solely expressed in PGCs. Treating the embryos derived from the female transgenic zebrafish with MTZ from 0 through 2 dpf (days post fertilization), we found that the germ cells were completely eliminated in the ones older than 2.5 dpf. At 20 dpf, the MTZ-treated juvenile had no germ cells in their gonads. At 100 dpf, the MTZ-treated adult exhibited male-like morphology and showed normal mating behaviors although they had no germ cells but only supporting cells in their gonads. Taken together, our results demonstrated that conditional elimination of PGCs during early development make the zebrafish male-like and infertile. It may provide an alternative strategy to make sterile and all-male farmed fish that is good for increasing aquaculture yield and preventing the genome modified species from potential ecological risks.
Collapse
Affiliation(s)
- Li Zhou
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Yongyong Feng
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Fang Wang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China
| | - Lan Jiang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Chun Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Qinshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China.
| | - Kaibin Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China.
| |
Collapse
|
2
|
Nie H, Jiang L, Gao Y, Xu H, Du S, Yan X. Polymorphic Microsatellite Markers for Solen grandis and Their Cross-Species Amplification in Three Other Species. Anim Biotechnol 2017; 30:82-86. [PMID: 29185850 DOI: 10.1080/10495398.2017.1367690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The grand jackknife clam Solen grandis is a commercially important mollusk species, but has been suffering from severe population decline due to over-exploitation and habitat destruction in China. To promote a conservation program for this species, it is necessary to evaluate its genetic diversity and population genetics. In this study, 10 novel polymorphic microsatellite makers were developed and characterized from the S. grandis through high throughput sequencing. The number of alleles at each locus ranged from 10 to 34 with an average of 20.8 alleles per locus. The observed and expected heterozygosities varied from 0.433 to 1.000 and from 0.696 to 0.976, with an average of 0.793 and 0.884, respectively. The polymorphism information content (PIC) value ranged from 0.633 (Sg43838) to 0.958 (Sg3754), with an average of 0.858. The cross-species amplification transferability of 10 loci to three closely related species ranged from 4.17 to 62.5%. These microsatellite loci will be useful for further investigation of population structure and conversation genetics of this species.
Collapse
Affiliation(s)
- Hongtao Nie
- a College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province , Dalian Ocean University , Dalian , China
| | - Liwen Jiang
- a College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province , Dalian Ocean University , Dalian , China
| | - Yijie Gao
- a College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province , Dalian Ocean University , Dalian , China
| | - Hong Xu
- b Ocean and Fisheries Science Research Institute of Jinzhou , Jinzhou , China
| | - Shangkun Du
- b Ocean and Fisheries Science Research Institute of Jinzhou , Jinzhou , China
| | - Xiwu Yan
- a College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province , Dalian Ocean University , Dalian , China
| |
Collapse
|
3
|
Aleza P, Cuenca J, Hernández M, Juárez J, Navarro L, Ollitrault P. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC PLANT BIOLOGY 2015; 15:80. [PMID: 25848689 PMCID: PMC4367916 DOI: 10.1186/s12870-015-0464-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/20/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. RESULTS Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. CONCLUSIONS The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but also maintains multi-trait associations. Identification of the centromere positions will allow the development of simple methods to analyse unreduced gamete formation mechanisms in a large range of genotypes and further modelling of genetic inheritance in sexual polyploidisation breeding schemes.
Collapse
Affiliation(s)
- Pablo Aleza
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - José Cuenca
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - María Hernández
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - José Juárez
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - Luis Navarro
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - Patrick Ollitrault
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
- />CIRAD, UMR AGAP, Avenue Agropolis - TA A-75/02 F‐34398, Montpellier, France
| |
Collapse
|
4
|
Nie HT, Li Q, Kong LF. Amplified fragment length polymorphism analysis to assess crossover interference and homozygosity in gynogenetic diploid Pacific abalone (Haliotis discus hannai). Anim Genet 2014; 45:453-5. [PMID: 24502828 DOI: 10.1111/age.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
Recombination analysis in gynogenetic diploids is a powerful tool for assessing the degree of inbreeding, investigating crossover events and understanding chiasma interference during meiosis. To estimate the marker-centromere recombination rate, the inheritance pattern of 654 amplified fragment length polymorphism (AFLP) markers was examined in the 72-h veliger larvae of two meiogynogenetic diploid families in the Pacific abalone (Haliotis discus hannai). The second-division segregation frequency (y) of the AFLP loci ranged from 0.00 to 0.96, with 23.9% of loci showing y-values higher than 0.67, evidencing the existence of interference. The average recombination frequency across the 654 AFLP loci was 0.45, allowing estimation of the fixation index of 0.55, indicating that meiotic gynogenesis could provide an effective means of rapid inbreeding in the Pacific abalone. The AFLP loci have a small proportion (4.4%) of y-values greater than 0.90, suggesting that a relatively low or intermediate degree of chiasma interference occurred in the abalone chromosomes. The information obtained in this study will enhance our understanding of the abalone genome and will be useful for genetic studies in the species.
Collapse
Affiliation(s)
- H-T Nie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | | | | |
Collapse
|