1
|
Li S, Sun Y, Cao S, Guo T, Tong X, Zhang Z, Sun J, Yang Y, Wang Q, Li D, Min L. Asparagopsis taxiformis mitigates ruminant methane emissions via microbial modulation and inhibition of methyl-coenzyme M reductase. Front Microbiol 2025; 16:1586456. [PMID: 40351315 PMCID: PMC12061954 DOI: 10.3389/fmicb.2025.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Asparagopsis taxiformis (A. taxiformis) has shown great potential to mitigate methane (CH4) emissions in recent years. This study aims to evaluate the impact of A. taxiformis on methane emissions and to fill the knowledge gap regarding its mechanisms of action in affecting CH4 metabolism and rumen fermentation. Methods The experimental design consisted of a control group (CON) and test groups supplemented with 2% (Low), 5% (Mid), and 10% (High) of dried and freeze-dried treatment A. taxiformis, respectively, for 48 h of in vitro rumen fermentation. The optimal combination strategy for mitigating CH4 emissions was confirmed by analyzing nutrient degradation, CH4 production and rumen fermentation parameters, and the mechanism of action was analyzed by metagenomic and metabolomic approaches. Results and discussion The results showed that freeze-dried treatment had better potential to mitigate CH4 emissions than dried treatment, and supplementation of freeze-dried treatments at Low, Mid, and High groups significantly reduced CH4 production by 32.44%, 98.53%, and 99.33%, respectively. However, the High group exhibited a huge negative impact on rumen fermentation. Therefore, subsequent analyses focused on the Low and Mid groups to explore the underlying mechanisms. Metagenomics analyses showed that supplementation of freeze-dried treatment with the Mid-level supplementation significantly increased the relative abundance of propionate-producing bacteria such as Prevotella, Ruminobacter, and Succinivibrio, while inhibited acetate-producing bacteria such as Ruminococcus, altered the pattern of volatile fatty acid (VFA) synthesis in the rumen, and reduced H2 availability for methanogenesis and promoted propionate production, indirectly alleviating CH4 production. Moreover, by suppressing the relative abundance of Methanobrevibacter, CH4 production in the rumen was directly suppressed. Furthermore, KEGG pathway analysis showed that A. taxiformis significantly inhibited the abundance of K00399, methyl-coenzyme M reductase alpha subunit, which directly inhibited CH4 synthesis. Metabolomics analysis of A. taxiformis supplementation significantly enriched ketoglutarate, malate, isocitrate, and melatonin, which may have reduced the release of rumen fermented H2, thereby mitigating CH4 emissions. In summary, freeze-dried treatment A. taxiformis at the 5% supplementation level achieved the optimal balance between CH4 mitigation and rumen fermentation efficiency.
Collapse
Affiliation(s)
- Shuai Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yi Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Department of Ecology, Jinan University, Guangzhou, China
| | - Siguang Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongjun Guo
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Ürümqi, China
| | - Xiong Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhifei Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yufeng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Department of Ecology, Jinan University, Guangzhou, China
| | - Qing Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Department of Ecology, Jinan University, Guangzhou, China
| | - Dagang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Min
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Ürümqi, China
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| |
Collapse
|
2
|
Li S, Sun Y, Guo T, Liu W, Tong X, Zhang Z, Sun J, Yang Y, Yang S, Li D, Min L. Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals (Basel) 2024; 14:2057. [PMID: 39061518 PMCID: PMC11274217 DOI: 10.3390/ani14142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Methane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of S. mcclurei through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried S. mcclurei at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation. The freeze-dried S. mcclurei at 2% supplementation significantly reduced CH4 emissions by 18.85% and enhanced crude protein degradability. However, total VFA and acetate concentrations were lower in both treatments compared to the control. The microbial shifts included a decrease in Lachnospiraceae_NK3A20_group and Ruminococcus and an increase in Selenomonas, Succinivibrio, and Saccharofermentans, promoting propionate production. Additionally, a significant reduction in Methanomicrobium was observed, indicating direct methane mitigation. Freeze-dried S. mcclurei at a 2% supplementation level shows potential as an effective methane mitigation strategy with minimal impact on rumen fermentation, supported by detailed insights into microbial community changes.
Collapse
Affiliation(s)
- Shuai Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yi Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Tongjun Guo
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| | - Wenyou Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Xiong Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Zhifei Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yufeng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Shuli Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Dagang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Li Min
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| |
Collapse
|
3
|
Sadeghi A, Rajabiyan A, Meygoli Nezhad N, Nabizade N, Alvani A, Zarei-Ahmady A. A review on Persian Gulf brown algae as potential source for anticancer drugs. ALGAL RES 2024; 79:103446. [DOI: 10.1016/j.algal.2024.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
4
|
Lema Ch E, Chóez-Guaranda I, Ruíz-Barzola O, Jaramillo LI, Pacheco Flores de Valgaz Á, Van Den Hende S, Manzano Santana P. Estudio de la variabilidad en el tiempo y espacio de la actividad antioxidante y composición bioquímica de Kappaphycus alvarezii en diferentes densidades de siembra. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Kappaphycus alvarezii es una de las especies de algas más cultivadas en el mundo, debido a su alto contenido de compuestos bioactivos con reportes antioxidantes y bioestimulantes. El presente estudio evaluó el efecto de las densidades de plantación sobre la composición bioquímica y antioxidante de K. alvarezii cultivada en un sistema de línea larga durante las estaciones seca y húmeda, con el fin de proporcionar una base científica para una cosecha óptima. Se midieron el contenido de humedad, cenizas, grasa, fibra, auxinas, fenoles, flavonoides, DPPH y ABTS. Los datos se analizaron mediante pruebas t, Wilcoxon, Kruskal-Wallis y ANOVA unidireccional. Los resultados mostraron un mayor contenido de grasa (2,01 % P.s), fibra bruta (5,21% P.s), contenido total de fenoles (324,09 μg GAE/g P.s) y ABTS (9,32 μg GAE/g P.s) durante la estación seca. Con respecto a la densidad de plantación, se produjo un aumento significativo del contenido en cenizas, fenoles totales y ABTS con una densidad de 10 líneas.célula-1 al mismo tiempo. Los contenidos de flavonoides, DPPH y auxina mostraron una tendencia estacional opuesta, alcanzando los niveles máximos en la estación húmeda. Este estudio aporta nueva información sobre las condiciones ambientales que pueden provocar cambios en la actividad antioxidante y la composición bioquímica de esta especie con vistas al desarrollo de bioproductos para diferentes sectores industriales como el alimentario, el farmacéutico y el de los fertilizantes en Ecuador.
Palabras claves: Alga roja; Fenoles; Flavonoides; Antioxidante; Composición bioquímica; Variación estacional; densidad de siembra.
Collapse
Affiliation(s)
- Estefany Lema Ch
- Facultad de Ciencias de la Vida (FCV); Campus Gustavo Galindo; Escuela Superior Politécnica del Litoral; Km. 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador
| | - Iván Chóez-Guaranda
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo; Km 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador
| | - Omar Ruíz-Barzola
- Facultad de Ciencias Naturales y Matemáticas (FCNM); Campus Gustavo Galindo; Escuela Superior Politécnica del Litoral (ESPOL), Km. 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador
| | - Lorena I. Jaramillo
- Departamento de Ingeniería Química y Agroindustria; Facultad de Ingeniería Química y Agroindustria; Ladrón de Guevara E11-253; Quito 170525 ; Ecuador
| | - Ángela Pacheco Flores de Valgaz
- Facultad de Ciencias de la Vida (FCV); Campus Gustavo Galindo; Escuela Superior Politécnica del Litoral; Km. 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador ; Laboratorio de Instrumental; Ingeniería en Biotecnología; Facultad de Ciencias de la Vida; Campus María Auxiliadora; Universidad Politécnica Salesiana (UPS); Km 19.5 vía a la Costa; Guayaquil P.O. Box 09-01-2074, Ecuador
| | - Sofie Van Den Hende
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), San Pedro de Manglaralto, P.O. Box 09-01-5863, Santa Elena, Ecuador
| | - Patricia Manzano Santana
- Facultad de Ciencias de la Vida (FCV); Campus Gustavo Galindo; Escuela Superior Politécnica del Litoral; Km. 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador; Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo; Km 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador; Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo; Km 30.5 vía Perimetral; Guayaquil P.O. Box 09-01-5863; Ecuador
| |
Collapse
|
5
|
Vucko MJ, de Nys R, Cole AJ. Plant growth-promoting properties of extracts produced by fermenting the freshwater macroalga, Oedogonium intermedium. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
7
|
Estimating the biomass density of macroalgae in land-based cultivation systems using spectral reflectance imagery. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Li Y, Yu HB, Zhang Y, Leao T, Glukhov E, Pierce ML, Zhang C, Kim H, Mao HH, Fang F, Cottrell GW, Murray TF, Gerwick L, Guan H, Gerwick WH. Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2020; 83:617-625. [PMID: 31916778 PMCID: PMC7210564 DOI: 10.1021/acs.jnatprod.9b01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- University of California, San Diego, La Jolla, California 92093, United States
| | - Hao-Bing Yu
- University of California, San Diego, La Jolla, California 92093, United States
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | - Yi Zhang
- University of California, San Diego, La Jolla, California 92093, United States
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People’s Republic of China
| | - Tiago Leao
- University of California, San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- University of California, San Diego, La Jolla, California 92093, United States
| | - Marsha L. Pierce
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Chen Zhang
- University of California, San Diego, La Jolla, California 92093, United States
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Hyunwoo Kim
- University of California, San Diego, La Jolla, California 92093, United States
| | - Huanru Henry Mao
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Fang Fang
- University of California, San Diego, La Jolla, California 92093, United States
| | - Garrison W. Cottrell
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas F. Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Lena Gerwick
- University of California, San Diego, La Jolla, California 92093, United States
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - William H. Gerwick
- University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Suthar P, Gajaria TK, Reddy C. Production of quality seaweed biomass through nutrient optimization for the sustainable land-based cultivation. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Praeger C, Vucko MJ, de Nys R, Cole A. Maximising the productivity of the attached cultivation of Ulva tepida in land-based systems. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Extraction and Characterization of Lipids from Macroalgae. Methods Mol Biol 2019. [PMID: 31148125 DOI: 10.1007/978-1-4939-9484-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Although most algal biofuel research has focused on microalgae, macroalgae are also potential sources of lipid for the production of biodiesel and other liquid fuels. Reliable, accurate methods for assessing the lipid composition of biomass are essential for the development of macroalgae in this area. The conventional methods most commonly used to evaluate lipid composition, such as those of Bligh and Dyer and Folch, do not provide complete extraction of lipids in photosynthetic cells/tissues and therefore do not provide an accurate accounting of lipid production. Here we present a 2-EE lipid extraction protocol, a method which has been demonstrated to be superior to conventional lipid extraction methods for microalgae, adapted for use with macroalgae.
Collapse
|
12
|
Cole A, Praeger C, Mannering T, de Nys R, Magnusson M. Hot and bright: Thermal and light environments for the culture of Oedogonium intermedium and the geographical limits for large-scale cultivation in Australia. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Chen L, Yang Y, Ge J, Cui X, Xiong Y. Study on the grading standard of Panax notoginseng seedlings. J Ginseng Res 2018; 42:208-217. [PMID: 29719468 PMCID: PMC5925621 DOI: 10.1016/j.jgr.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The quality differences in seedlings of medicinal herbs often affect the quality of medicinal parts. The establishment of the grading standard of Panax notoginseng seedlings is significant for the stable quality of medicinal parts of P. notoginseng. METHODS To establish the grading standard of P. notoginseng seedlings, a total of 36,000 P. notoginseng seedlings were collected from 30 producing areas, of which the fresh weight, root length, root diameter, bud length, bud diameter, and rootlet number were measured. The K-means clustering method was applied to grade seedlings and establish the grading standard. RESULTS The fresh weight and rootlet number of P. notoginseng seedlings were determined as the final indices of grading. P. notoginseng seedlings from different regions of Yunnan could be preliminarily classified into four grades: the special grade, the premium grade, the standard grade, and culled seedlings. CONCLUSION The grading standard was proven to be reasonable according to the agronomic characters, emergence rate, and photosynthetic efficiency of seedlings after transplantation, and the yields and contents of active constituents of the medicinal parts from different grades of seedlings.
Collapse
Affiliation(s)
- Lijuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Panax Notoginseng, Kunming, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources State Administration of Traditional Chinese Medicine, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Panax Notoginseng, Kunming, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jin Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Panax Notoginseng, Kunming, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources State Administration of Traditional Chinese Medicine, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Panax Notoginseng, Kunming, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources State Administration of Traditional Chinese Medicine, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Panax Notoginseng, Kunming, China
- Laboratory of Sustainable Utilization of Panax Notoginseng Resources State Administration of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
14
|
Praeger C, de Nys R. Seeding filamentous Ulva tepida on free-floating surfaces: A novel cultivation method. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gosch BJ, Lawton RJ, Paul NA, de Nys R, Magnusson M. Environmental effects on growth and fatty acids in three isolates of Derbesia tenuissima (Bryopsidales, Chlorophyta). ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Manipulating antioxidant content in macroalgae in intensive land-based cultivation systems for functional food applications. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats. Mar Drugs 2015; 13:788-805. [PMID: 25648511 PMCID: PMC4344602 DOI: 10.3390/md13020788] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.
Collapse
|
18
|
Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|