1
|
Hu J, Zhao H, Wang G, Sun Y, Wang L. Energy consumption and intestinal microbiome disorders of yellow catfish (Pelteobagrus fulvidraco) under cold stress. Front Physiol 2022; 13:985046. [PMID: 36176772 PMCID: PMC9513240 DOI: 10.3389/fphys.2022.985046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The yellow catfish (P. fulvidraco), as one of the economically-relevant freshwater fish found in China, cannot tolerate cold stress. Understanding the physiological and biochemical mechanisms under cold stress may provide insights for improving yellow catfish management in the cold. Therefore, we investigated the metabolic and intestinal microbiota changes in cold stress in response to induced cold stress. We found that cold stress in yellow catfish lead to a significant increase in the consumption of glucose and triglycerides, as well as increased use of cholesterol as an alternate energy source. Moreover, cold stress also activated several significant biological processes in the fish such as thermogenesis, oxidative phosphorylation, the spliceosome machinery, RNA transport, protein processing that occurs in the ER, and purine and pyrimidine metabolism pathways involved in energy production. On the other hand, many other mechanisms like insulin resistance, starch and sucrose metabolism, and the glyoxylate and dicarboxylate metabolic pathways that also served as energy production pathways were weakened. Furthermore, organic acids and their derivatives as well as the lipids and lipid-like molecules were mainly altered in cold stress; prenol lipids, steroids, and their derivatives were significantly upregulated, while fatty acyls and glycerophospholipids were significantly downregulated. Transcriptomic and metabolomic integrated analysis data revealed that carbohydrate metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism were involved in cold stress resistance. In addition, the intestinal microbiota abundance was also reduce and the pathogenic bacteria of plesiomonas was rapidly appreciation, which suggesting that cold stress also impaired intestinal health. This research study could offer insights into winter management or the development of feed to promote cold resistance in yellow catfish.
Collapse
Affiliation(s)
- Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoxia Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuping Sun
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lei Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| |
Collapse
|
2
|
Gao D, Huang J, Lin G, Lu J. A time-course transcriptome analysis of gonads from yellow catfish (Pelteobagrus fulvidraco) reveals genes associated with gonad development. BMC Genomics 2022; 23:409. [PMID: 35637435 PMCID: PMC9153201 DOI: 10.1186/s12864-022-08651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The yellow catfish, Pelteobagrus fulvidraco, is a commercially important fish species. It is widely distributed in the fresh water areas of China, including rivers, lakes, and reservoirs. Like many other aquaculture fish species, people have observed significant size dimorphism between male and female yellow catfish and it shows a growth advantage in males. Results Here, at the first time, the time-course transcriptome was used to explore the various expression profiles of genes in different gonad developmental stages and genders. A total of 2696 different expression genes (DEGs) were identified from different stages. Based on these DEGs, 13 gonad development related genes were identified which showed time-specific or sex biased expression patterns. Conclusion This study will provide the crucial information on the molecular mechanism of gonad development of female and male yellow catfish. Especially, during the different gonad development stages, these 13 gonad development related genes exhibit various expression patterns in female and male individual respectively. These results could inspire and facilitate us to understanding the various roles of these genes play in different gonad development stages and genders. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08651-0.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China. .,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China. .,Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Shen X, Yan H, Jiang J, Li W, Xiong Y, Liu Q, Liu Y. Profile of gene expression changes during estrodiol-17β-induced feminization in the Takifugu rubripes brain. BMC Genomics 2021; 22:851. [PMID: 34819041 PMCID: PMC8614003 DOI: 10.1186/s12864-021-08158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17β (E2) -induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. Results In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. Conclusion A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08158-0.
Collapse
Affiliation(s)
- Xufang Shen
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China.,Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Jieming Jiang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Yuyu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| |
Collapse
|
4
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
5
|
Zhu W, He Y, Ruan Z, Zhang X, Liao L, Gao Y, Lin N, Chen X, Liang R, Liu WS. Identification of the cDNA Encoding the Growth Hormone Receptor ( GHR) and the Regulation of GHR and IGF-I Gene Expression by Nutritional Status in Reeves' Turtle ( Chinemys reevesii). Front Genet 2020; 11:587. [PMID: 32582298 PMCID: PMC7296147 DOI: 10.3389/fgene.2020.00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Chinemys reevesii (Reeves’ turtle) is a slow-growing reptile that is distributed widely across China. Prior to this study, the cDNA sequence of the growth hormone receptor (GHR) in the Reeve’s turtle, or how periods of starvation might influence the gene expression of GHR and insulin-like growth factor I (IGF-I) in this species, were unknown. Here, we identified the full-length sequence of the cDNA encoding GHR in Reeves’ turtle by using RT-PCR and RACE. The full-length GHR cDNA was identified to be 3936 base-pairs in length, with a 1848 base-pair open reading frame (ORF) that encodes a 615 amino acid protein. Analysis showed that GHR mRNA was detectable in a wide range of tissues; the highest and lowest levels of expression were detected in the liver and the gonad, respectively. IGF-I was also expressed in a range of tissues, but not in the gonad; the highest levels of IGF-I expression were detected in the liver. After 4 weeks of fasting, the expression levels of GHR and IGF-I in the liver had decreased significantly; however, these gradually returned to normal after refeeding. We report the first cloned cDNA sequence for the GHR gene in the Reeve’s turtle. Our findings provide a foundation from which to investigate the specific function of the GHR in Reeve’s turtle, and serve as a reference for studying the effects of different nutrient levels on GHR expression in this species.
Collapse
Affiliation(s)
- Wenlu Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuohao Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Liangyuan Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yicong Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Nani Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiancan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Rui Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Transcriptomic analysis of female and male gonads in juvenile snakeskin gourami (Trichopodus pectoralis). Sci Rep 2020; 10:5240. [PMID: 32251302 PMCID: PMC7090014 DOI: 10.1038/s41598-020-61738-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/19/2020] [Indexed: 01/05/2023] Open
Abstract
The snakeskin gourami (Trichopodus pectoralis) exhibits sexual dimorphism, particularly in body size. Since the snakeskin gourami is usually marketed during sexual maturation, the sexual size dimorphism has become an economically important trait. Sex-biased gene expression plays a key role in phenotypic sexual dimorphism. Therefore, using high-throughput RNA sequencing (RNA-seq) technology, we aimed to explore the differentially expressed genes (DEGs) in ovary and testis during sex differentiation in juvenile snakeskin gourami. Our results revealed a number of DEGs were demonstrated to be overexpressed in ovary (11,625 unigenes) and testis (16,120 unigenes), and the top 10 female-biased (rdh7, dnajc25, ap1s3, zp4, polb, parp12, trim39, gucy2g, rtbs, and fdxr) and male-biased (vamp3, nbl1, dnah2, ccdc11, nr2e3, spats1, pih1d2, tekt3, fbxo36, and mybl2) DEGs were suggested to be mainly associated with ovary and testis differentiation, respectively. Additionally, using real-time reverse transcription polymerase chain reaction (qRT-PCR), validation of the differential expression of 21 genes that were previously shown to be related to gonad development was performed (ar, bHLH, cyp19a1, daz, dead-end, esrb, esrrg, gnrhr, gpa, gsg1l, hsd17B, mospd1, nanos-1, nanos-2, p53, piwi-1, piwi-2, rerg, rps6ka, tgf-beta, and VgR). The results showed a significantly positive correlation (0.84; P < 0.001) between the results of RNA-seq and qRT-PCR. Therefore, RNA-seq analysis in our study identified global genes that were associated with ovary and testis differentiation in the juvenile phase of the snakeskin gourami. Our findings provide valuable transcriptomic bioinformation for further investigation of reproductive biology and applications of sex manipulation.
Collapse
|
7
|
Shen F, Long Y, Li F, Ge G, Song G, Li Q, Qiao Z, Cui Z. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020; 112:2603-2614. [PMID: 32109564 DOI: 10.1016/j.ygeno.2020.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish.
Collapse
Affiliation(s)
- Fangfang Shen
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhigang Qiao
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Gao D, Zheng M, Lin G, Fang W, Huang J, Lu J, Sun X. Construction of High-Density Genetic Map and Mapping of Sex-Related Loci in the Yellow Catfish (Pelteobagrus fulvidraco). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:31-40. [PMID: 31897745 DOI: 10.1007/s10126-019-09928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is a very important aquaculture species distributed in freshwater area of China. All-male yellow catfish is very popular in aquaculture because of their significant sex dimorphism phenomena. The males grow much faster than females in full-sibling family. However, the sex dimorphism mechanism is still unclear in yellow catfish. In order to better understand the genetic basis of yellow catfish sexual dimorphism, it is vital to map the sex-related traits and localize the candidate genes across yellow catfish whole genome. Here, we constructed a high-density linkage map of yellow catfish using genotyping-by-sequencing (GBS) strategy. A total of 5705 single-nucleotide polymorphism (SNP) markers were mapped to 26 different linkage groups (LGs) using 184 F1 offspring. The total genetic map length was 3071.59 cM, with an average interlocus distance of 0.54 cM. Eleven significant sex-related QTLs in yellow catfish were identified. Six sex-related genes were identified from the region of reference genome near these QTLs including amh, gnrhr, vasa, lnnr1, foxl2, and bmp15. The high-density genetic linkage map provides valuable resources for yellow catfish molecular assistant breeding and elucidating sex differentiation process. Moreover, the comparative genomic study was analyzed among yellow catfish, channel catfish, and zebrafish. It revealed highly conserved chromosomal distribution between yellow catfish and channel catfish.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
9
|
Shen X, Yan H, Zhang L, Yuan Z, Liu W, Wu Y, Liu Q, Luo X, Liu Y. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in Takifugu rubripes brain during gonadal sex differentiation. Genes Genomics 2020; 42:425-439. [DOI: 10.1007/s13258-019-00914-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022]
|
10
|
Zou Y, Wu Z, Fan Z, Liang D, Wang L, Song Z, You F. Analyses of mRNA-seq and miRNA-seq of the brain reveal the sex differences of gene expression and regulation before and during gonadal differentiation in 17β-estradiol or 17α-methyltestosterone-induced olive flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 87:78-90. [PMID: 31788912 DOI: 10.1002/mrd.23303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important flatfish species cultured in East Asia. Female flounders generally grow more rapidly than males, therefore control of the sex ratio seems to be a proposed way to increase production. However, the sex determination gene and sex determination mechanism have yet been elucidated. The brain is an important organ that is involved in gonadal development. To explore the sex differences of gene expression in the brain before and during the flounder gonadal differentiation, we used messenger RNA (mRNA)-seq technology to investigate transcriptomes of male and female brains. Between female and male brains, 103 genes were differentially expressed before ovarian differentiation, 16 genes were differentially expressed before testicular differentiation, and 64 genes were differentially expressed during gonadal differentiation. According to annotation and Kyoto Encyclopedia of Genes and Genomes information, the differentially expressed genes (DEGs) were involved in circadian rhythm, circadian rhythm-fly, circadian entrainment, dopaminergic synapse, calcium signaling, glutamatergic synapse, taste transduction, herpes simplex infection, long-term depression, retrograde endocannabinoid signaling, and the synaptic vesicle cycle pathways. MicroRNA (miRNA)-seq was performed during the gonadal differentiation and the target genes of miRNAs were predicted. Integrated analysis of mRNA-seq and miRNA-seq showed that 29 of the 64 DEGs were regulated by the differentially expressed miRNAs during the gonadal differentiation. Our study provides a basis for further studies of brain sex differentiation and the molecular mechanism of sex determination in olive flounder.
Collapse
Affiliation(s)
- Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Shenghang Aquatic Science and Technology Co., Ltd., Weihai, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone. Biol Reprod 2019; 99:446-460. [PMID: 29272338 DOI: 10.1093/biolre/iox175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.
Collapse
Affiliation(s)
- Stephanie L J Lee
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
12
|
Yang Y, Liu D, Wu L, Huang W, Yang S, Xia J, Liu X, Meng Z. Comparative transcriptome analyses reveal changes of gene expression in fresh and cryopreserved yellow catfish (Pelteobagrus fulvidraco) sperm and the effects of Cryoprotectant Me 2SO. Int J Biol Macromol 2019; 133:457-465. [PMID: 31002905 DOI: 10.1016/j.ijbiomac.2019.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
This study, for the first time in fish, compared the transcriptome of fresh and frozen-thawed sperm, and would help to better understand the effect of cryopreservation on fish sperm and then better preserve the aquatic germplasm resources. Here, we employed high-throughput sequencing technology to obtain the transcriptome of yellow catfish from fresh sperm, cryopreserved sperm with and without cryoprotectant. When cryoprotectant (Me2SO) was excluded, down-regulated genes were significantly enriched into calcium ion binding, cytoskeletal protein binding, microfilament motor activity, calmodulin binding and carnitine O-acyltransferase activity, which affected Ca2+ regulation, cellular morphology, motility and metabolism. Moreover, heat shock proteins and genes associated with regulation of cholesterol, HCO3- and protein tyrosine phosphorylation (PTP) were down-regulated, and thus would impair ability against stress, membrane rigidity, pH regulation and signal transduction of cryopreserved sperm. After Me2SO was added, the amounts of DEGs decreased significantly and down-regulation of genes were found mainly in cytoskeleton and heat shock proteins, thereby suggesting that Me2SO effectively reduced the impact caused by low temperature on gene expression. Whether adding Me2SO or not, the up-regulated genes were mainly found in ribosomal proteins genes. However, when Me2SO was added, over-expression of some genes might contribute to maintain normal function of cryopreserved sperm.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongqing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Sen Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhong Xia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaochun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Watanabe L, Gomes F, Vianez J, Nunes M, Cardoso J, Lima C, Schneider H, Sampaio I. De novo transcriptome based on next-generation sequencing reveals candidate genes with sex-specific expression in Arapaima gigas (Schinz, 1822), an ancient Amazonian freshwater fish. PLoS One 2018; 13:e0206379. [PMID: 30372461 PMCID: PMC6205615 DOI: 10.1371/journal.pone.0206379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background The Arapaima (Arapaima gigas) is one of the world's largest freshwater bony fish, and is found in the rivers of the Amazon basin. This species is a potential aquaculture resource, although reproductive management in captivity is limited in particular due to the lack of external sexual dimorphism. In this study, using the 454 Roche platform (pyrosequencing) techniques, we evaluated a major portion of the transcriptome of this important Amazonian species. Results Four libraries obtained from the liver and skin tissue of juvenile specimens (representing males and females separately) were sequenced, yielding 5,453,919 high-quality reads. The de novo transcriptome assembly resulted in 175,792 contigs, with 51,057 significant blast hits. A total of 38,586 transcripts were mapped by Gene Ontology using Blast2GO. We identified 20,219 genes in the total transcriptome (9,551 in the liver and 16,818 in the skin). The gene expression analyses indicated 105 genes in the liver and 204 in the skin with differentiated expression profiles, with 95 being over-expressed in the females and 214 in the males. The log2 Fold Change and heatmap based on Reads Per Kilobase per Million mapped reads (RPKM) revealed that the gene expression in the skin is highly differentiated between male and female arapaima, while the levels of expression in the liver are similar between the sexes. Conclusion Transcriptome analysis based on pyrosequencing proved to be a reliable tool for the identification of genes with differentiated expression profiles between male and female arapaima. These results provide useful insights into the molecular pathways of sexual dimorphism in this important Amazonian species, and for comparative analyses with other teleosts.
Collapse
Affiliation(s)
- Luciana Watanabe
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
- * E-mail:
| | - Fátima Gomes
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - João Vianez
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Márcio Nunes
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Jedson Cardoso
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Clayton Lima
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Horacio Schneider
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| |
Collapse
|
14
|
Yu L, Xu D, Ye H, Yue H, Ooka S, Kondo H, Yazawa R, Takeuchi Y. Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:467-480. [PMID: 29616430 DOI: 10.1007/s10126-018-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.
Collapse
Affiliation(s)
- Lingyun Yu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
| | - Dongdong Xu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316100, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shioh Ooka
- Japan Ocean Resources Development and Engineering Co., Ltd., 7-1 Jizohamacho, Kishiwada, Osaka, 596-0015, Japan
| | - Hidehiro Kondo
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Yutaka Takeuchi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
15
|
Liu QN, Xin ZZ, Liu Y, Zhang DZ, Jiang SH, Chai XY, Wang ZF, Zhang HB, Bian XG, Zhou CL, Tang BP. De novo transcriptome assembly and analysis of differential gene expression following lipopolysaccharide challenge in Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2018; 73:84-91. [PMID: 29191796 DOI: 10.1016/j.fsi.2017.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
The yellow catfish, Pelteobagrus fulvidraco, has been recognized as an important freshwater aquaculture species in Eastern and Southeast Asia. To gain a better understanding of the immune response in P. fulvidraco, we analyzed its transcriptome following stimulation with lipopolysaccharide (LPS). Phosphate buffer saline (PBS) was used as control. Following assembly and annotation, 72,152 unigenes with an average length of 1090 bp were identified. A total of 370 differentially expressed genes (DEGs) in the P. fulvidraco were observed at 12 h post LPS treatment, including 197 up-regulated genes and 173 down-regulated genes. Clusters of Orthologous Groups of proteins (KOG/COG) annotation demonstrated that a total of 18,819 unigenes classified into 26 categories. Gene ontology (GO) analysis revealed 20 biological process subcategories, 7 cellular component subcategories and 20 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified immune responses pathways. Quantitative reverse transcription polymerase chain reaction measured the expression of 18 genes involved in the immune response. CXCL2-like chemokine (CXCL2), goose-type lysozyme (LYZ G), and cathepsin K (CTSK) were significantly up-regulated. This study enriches the P. fulvidraco transcriptome database and provides insight into the immune response of P. fulvidraco against infection.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xun-Guang Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| |
Collapse
|
16
|
Liu H, Pang M, Yu X, Zhou Y, Tong J, Fu B. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix). DNA Res 2018; 25:4791395. [PMID: 29315393 PMCID: PMC6014435 DOI: 10.1093/dnares/dsx054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species.
Collapse
Affiliation(s)
- Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Zhang J, Ma W, He Y, Dawar FU, Xiong S, Mei J. Potential Contributions of miR-200a/-200b and Their Target Gene-Leptin to the Sexual Size Dimorphism in Yellow Catfish. Front Physiol 2017; 8:970. [PMID: 29249979 PMCID: PMC5714929 DOI: 10.3389/fphys.2017.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual size dimorphism is the consequence of differential expression of sex-biased genes related to feeding and growth. Leptin is known to regulate energy balance by regulating food intake. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), the expression of leptin (lep) and its functional receptor (lepr) were detected during larval development. Both lep and lepr have lower expression in males than in females during 1–4 weeks post hatching. 17a-Methyltestosterone (MT) treatment resulted in decreased expression of lep and lepr in both male and female larval fish. Interestingly, the mRNA levels of lep and lepr in juvenile male were significantly decreased compared with juvenile female during short-term fasting periods. Lep was predicted to be a potential target of miR-200a and miR-200b that had an opposite expression pattern to lep in male and female larvas. The results of luciferase reporter assay suggested that lep is a target of miR-200a/-200b. Subsequently, male hormone and fasting treatment have opposite effects on the expression of miR-200a/-200b and lep between males and females. In summary, our results suggest that sexual size dimorphism in fish species is probably caused by the sexually dimorphic expression of leptin, which could be negatively regulated by miR-200a/-200b.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenge Ma
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Farman U Dawar
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shuting Xiong
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jie Mei
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Zhao C, Zhang G, Yin S, Li Z, Wang Q, Chen S, Zhou G. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of sex-biased miRNA-mRNA pairs in gonad tissue of dark sleeper (Odontobutis potamophila). BMC Genomics 2017; 18:613. [PMID: 28806919 PMCID: PMC5557427 DOI: 10.1186/s12864-017-3995-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Background The dark sleeper (Odontobutis potamophila) is an important commercial fish species which shows a sexually dimorphic growth pattern. However, the lack of sex transcriptomic data is hindering further research and genetically selective breeding of the dark sleeper. In this study, integrated analysis of mRNA and miRNA was performed on gonad tissue to elucidate the molecular mechanisms of sex determination and differentiation in the dark sleeper. Results A total of 143 differentially expressed miRNAs and 16,540 differentially expressed genes were identified. Of these, 8103 mRNAs and 75 miRNAs were upregulated in testes, and 8437 mRNAs and 68 miRNAs were upregulated in ovaries. Integrated analysis of miRNA and mRNA expression profiles predicted more than 50,000 miRNA-mRNA interaction sites, and among them 27,583 negative miRNA-mRNA interactions. A number of sex related genes were targeted by sex-biased miRNAs. The relationship between 15 sex-biased genes and 15 sex-biased miRNAs verified by using qRT-PCR were described. Additionally, a number of SNPs were revealed through the transcriptome data. Conclusions The overall results of this study facilitate our understanding of the molecular mechanism underlying sex determination and differentiation and provide valuable genomic information for selective breeding of the dark sleeper. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3995-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Guosong Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China. .,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| | - Zecheng Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Qintao Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Shuqiao Chen
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu, 210036, China
| | - Guoqin Zhou
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu, 210036, China
| |
Collapse
|
19
|
Metzger DCH, Schulte PM. Maternal stress has divergent effects on gene expression patterns in the brains of male and female threespine stickleback. Proc Biol Sci 2016; 283:rspb.2016.1734. [PMID: 27683372 DOI: 10.1098/rspb.2016.1734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 11/12/2022] Open
Abstract
Maternal stress can have long-term effects on neurodevelopment that can influence offspring performance and population evolutionary trajectories. To examine the mechanistic basis for these neurodevelopmental effects of maternal stress, we used RNA-seq to assess differential gene expression across the brain transcriptome of adult male and female threespine stickleback (Gasterosteus aculeatus) from stressed and unstressed mothers. We identified sexually divergent effects of maternal stress on the brain transcriptome. In males, genes that were upregulated by maternal stress were enriched for processes involved in synaptic function and organization and steroid hormone-mediated signalling pathways, whereas in females genes that were upregulated by maternal stress were enriched for processes involved in protein translation and metabolic functions. The expression of several genes involved in the hypothalamic-pituitary-interrenal response to stress and epigenetic processes such as the regulation of DNA methylation patterns and miRNAs increased in males and not in females. These data suggest that maternal stress has markedly different effects on cellular pathways in the brains of male and female offspring of mothers that are exposed to stress, which could have important implications when assessing the long-term ecological and evolutionary impacts of stress across generations.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Patricia M Schulte
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
20
|
Schulze TT, Ali JM, Bartlett ML, McFarland MM, Clement EJ, Won HI, Sanford AG, Monzingo EB, Martens MC, Hemsley RM, Kumar S, Gouin N, Kolok AS, Davis PH. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome. J Genomics 2016; 4:29-41. [PMID: 27672404 PMCID: PMC5033730 DOI: 10.7150/jgen.16885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included.
Collapse
Affiliation(s)
- Thomas T Schulze
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE, 68198-6805, United States
| | - Maggie L Bartlett
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Madalyn M McFarland
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Emalie J Clement
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Harim I Won
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Austin G Sanford
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Elyssa B Monzingo
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Matthew C Martens
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Ryan M Hemsley
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Sidharta Kumar
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, La Serena, Chile;; Centro de Estudios Avanzados en Zonas Aridas, La Serena, Chile;; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Alan S Kolok
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA;; Center for Environmental Health and Toxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|