1
|
Thompson WA, Lau GY, Richards JG, Devlin RH. Rationed and satiated growth hormone transgenic Coho Salmon (Oncorhynchus kisutch) show tissue specific differences in energy stores. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110781. [PMID: 35902066 DOI: 10.1016/j.cbpb.2022.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Growth hormone transgenic coho salmon experience increased growth rates, driven primarily through elevated feed intake and feed conversion. However, neuropeptides that signal appetite stimulation have been shown to exhibit variable responses across fed states, suggesting a more complex system mediating growth in these fish. Studies have proposed that growth hormone may have a modulatory role on the energy reserves of fish, possibly through AMP-activated protein kinase (AMPK) activation. AMPK, an energy sensor in cells, has previously been shown to be upregulated in growth hormone transgenic salmon when compared to wild type, however, whether this effect is seen across fed states is unknown. Here, we tested the hypothesis that growth hormone induces an energetic deficit in metabolic tissues, leading to constitutive AMPK activation in growth hormone transgenic salmon. This study compared AMPK activity, ATP, and glycogen, of the liver, heart, and muscle of wild-type, and growth hormone transgenic salmon either fed to satiation or a wild-type ration. The results suggest that white muscle ATP levels in growth hormone salmon are elevated in satiation and rationed conditions. In the liver, growth hormone transgenic salmon fed a rationed wild-type diet experience reductions in ATP level and glycogen. In none of the tissues examined, did AMPK activity change. Taken together, these results indicate that growth hormone transgenic salmon experience metabolic duress when not fed to satiation.
Collapse
Affiliation(s)
- W A Thompson
- The University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, British Columbia V6T 1Z4, Canada.
| | - G Y Lau
- The University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, British Columbia V6T 1Z4, Canada
| | - J G Richards
- The University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, British Columbia V6T 1Z4, Canada
| | - R H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, British Columbia V7V 1N6, Canada
| |
Collapse
|
2
|
Dai Y, Shen Y, Guo J, Yang H, Chen F, Zhang W, Wu W, Xu X, Li J. Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
McClelland EK, Chan MTT, Lin X, Sakhrani D, Vincelli F, Kim JH, Heath DD, Devlin RH. Loci associated with variation in gene expression and growth in juvenile salmon are influenced by the presence of a growth hormone transgene. BMC Genomics 2020; 21:185. [PMID: 32106818 PMCID: PMC7045383 DOI: 10.1186/s12864-020-6586-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth regulation is a complex process influenced by genetic and environmental factors. We examined differences between growth hormone (GH) transgenic (T) and non-transgenic (NT) coho salmon to elucidate whether the same loci were involved in controlling body size and gene expression phenotypes, and to assess whether physiological transformations occurring from GH transgenesis were under the influence of alternative pathways. The following genomic techniques were used to explore differences between size classes within and between transgenotypes (T vs. NT): RNA-Seq/Differentially Expressed Gene (DEG) analysis, quantitative PCR (qPCR) and OpenArray analysis, Genotyping-by-Sequencing, and Genome-Wide Association Study (GWAS). RESULTS DEGs identified in comparisons between the large and small tails of the size distributions of T and NT salmon (NTLarge, NTSmall, TLarge and TSmall) spanned a broad range of biological processes, indicating wide-spread influence of the transgene on gene expression. Overexpression of growth hormone led to differences in regulatory loci between transgenotypes and size classes. Expression levels were significantly greater in T fish at 16 of 31 loci and in NT fish for 10 loci. Eleven genes exhibited different mRNA levels when the interaction of size and transgenotype was considered (IGF1, IGFBP1, GH, C3-4, FAS, FAD6, GLUT1, G6PASE1, GOGAT, MID1IP1). In the GWAS, 649 unique SNPs were significantly associated with at least one study trait, with most SNPs associated with one of the following traits: C3_4, ELA1, GLK, IGF1, IGFBP1, IGFII, or LEPTIN. Only 1 phenotype-associated SNP was found in common between T and NT fish, and there were no SNPs in common between transgenotypes when size was considered. CONCLUSIONS Multiple regulatory loci affecting gene expression were shared between fast-growing and slow-growing fish within T or NT groups, but no such regulatory loci were found to be shared between NT and T groups. These data reveal how GH overexpression affects the regulatory responses of the genome resulting in differences in growth, physiological pathways, and gene expression in T fish compared with the wild type. Understanding the complexity of regulatory gene interactions to generate phenotypes has importance in multiple fields ranging from applications in selective breeding to quantifying influences on evolutionary processes.
Collapse
Affiliation(s)
- Erin Kathleen McClelland
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada. .,, EKM Consulting 730 Drake St, Nanaimo, BC, V9S 2T1, Canada.
| | - Michelle T T Chan
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Xiang Lin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Felicia Vincelli
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.,Korea Polar Research Institute (KOPRI), 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
4
|
Kim JH, Chatchaiphan S, Crown MT, White SL, Devlin RH. Effect of growth hormone overexpression on gastric evacuation rate in coho salmon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:119-135. [PMID: 28894993 DOI: 10.1007/s10695-017-0418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
- Unit of Polar Genomics, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Phaholyothin Road, Bangkok, Thailand
| | - Michelle T Crown
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Samantha L White
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada.
| |
Collapse
|