1
|
Liu YJ, Zhang TY, Wang QQ, Draisma SGA, Hu ZM. Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade. BMC Genomics 2024; 25:747. [PMID: 39080531 PMCID: PMC11290263 DOI: 10.1186/s12864-024-10616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae). RESULTS We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection. CONCLUSIONS Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.
Collapse
Affiliation(s)
- Yi-Jia Liu
- Ocean School, Yantai University, Yantai, 264005, China
| | | | - Qi-Qi Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Liu F, Wang Y, Huang H, Chen N. Evolutionary dynamics of plastomes in coscinodiscophycean diatoms revealed by comparative genomics. Front Microbiol 2023; 14:1203780. [PMID: 37396366 PMCID: PMC10307964 DOI: 10.3389/fmicb.2023.1203780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
To understand the evolution of coscinodiscophycean diatoms, plastome sequences of six coscinodiscophycean diatom species were constructed and analyzed in this study, doubling the number of constructed plastome sequences in Coscinodiscophyceae (radial centrics). The platome sizes varied substantially in Coscinodiscophyceae, ranging from 119.1 kb of Actinocyclus subtilis to 135.8 kb of Stephanopyxis turris. Plastomes in Paraliales and Stephanopyxales tended to be larger than those in Rhizosoleniales and Coscinodiacales, which were due to the expansion of the inverted repeats (IRs) and to the marked increase of the large single copy (LSC). Phylogenomic analysis indicated that Paralia and Stephanopyxis clustered tightly to form the Paraliales-Stephanopyxales complex, which was sister to the Rhizosoleniales-Coscinodiscales complex. The divergence time between Paraliales and Stephanopyxales was estimated at 85 MYA in the middle Upper Cretaceous, indicating that Paraliales and Stephanopyxales appeared later than Coscinodiacales and Rhizosoleniales according to their phylogenetic relationships. Frequent losses of housekeeping protein-coding genes (PCGs) were observed in these coscinodiscophycean plastomes, indicating that diatom plastomes showed an ongoing reduction in gene content during evolution. Two acpP genes (acpP1 and acpP2) detected in diatom plastomes were found to be originated from an early gene duplication event occurred in the common progenitor after diatom emergence, rather than multiple independent gene duplications occurring in different lineages of diatoms. The IRs in Stephanopyxis turris and Rhizosolenia fallax-imbricata exhibited a similar trend of large expansion to the small single copy (SSC) and slightly small contraction from the LSC, which eventually led to the conspicuous increase in IR size. Gene order was highly conserved in Coscinodiacales, while multiple rearrangements were observed in Rhizosoleniales and between Paraliales and Stephanopyxales. Our results greatly expanded the phylogenetic breadth in Coscinodiscophyceae and gained novel insights into the evolution of plastomes in diatoms.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yichao Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
3
|
Siddiqui NZ, Rehman AU, Yousuf W, khan AI, Farooqui NA, Zang S, Xin Y, Wang L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog 2022; 14:39. [PMID: 36115959 PMCID: PMC9482207 DOI: 10.1186/s13099-022-00512-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Type-1 Diabetes Mellitus (T1DM) is regarded as a multifunctional, immune-related disease which causes massive destruction of islet β-cells in pancreas resulting in hyperglycemic, hypoinsulinemia and hyperlipidimic conditions. The aim of the present study, was to investigate the hypothesis that streptozotocin (STZ)-induced T1DM in Balb/c mice when treated with crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) depicts improvement in diabetes-related symptoms. Treatment with CDDP resulted in decreased body weight loss, improved food consumption and water intake disbalances. The CDDP effectively improved fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, insulin secretion, rejuvenation of β-cells mass, serum lipid profile and pro-inflammatory cytokines levels. Additionally, treatment with CDDP increased the population of beneficial bacteria such as Firmicutes, Bacteroidetes and Lactobacillus at phylum, family and genus levels by 16S rRNA sequencing. Furthermore, immunohistological examination confirmed that CDDP reduces the inflammation and restored the structural morphology of colon and upraised the levels of insulin receptor substrate-1 (IRS-1), Mucin-2 (MUC-2) and tight-junction proteins (TJs) whereby maintaining the gut structures and barrier permeability. Thus, the above presented data, highlights the safe and therapeutic effects of crude polysaccharide (CDDP) from D. divaricata in the treatment and restoration of T1DM disorders and can be used as a food supplement alternative to diabetes medicine.
Collapse
|
4
|
Liang Y, Choi HG, Zhang S, Hu ZM, Duan D. The organellar genomes of Silvetia siliquosa (Fucales, Phaeophyceae) and comparative analyses of the brown algae. PLoS One 2022; 17:e0269631. [PMID: 35709195 PMCID: PMC9202911 DOI: 10.1371/journal.pone.0269631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
The brown alga Silvetia siliquosa (Tseng et Chang) Serrão, Cho, Boo & Brawly is endemic to the Yellow-Bohai Sea and southwestern Korea. It is increasingly endangered due to habitat loss and excessive collection. Here, we sequenced the mitochondrial (mt) and chloroplast (cp) genomes of S. siliquosa. De novo assembly showed that the mt-genome was 36,036 bp in length, including 38 protein-coding genes (PCGs), 26 tRNAs, and 3 rRNAs, and the cp-genome was 124,991 bp in length, containing 139 PCGs, 28 tRNAs, and 6 rRNAs. Gene composition, gene number, and gene order of the mt-genome and cp-genome were very similar to those of other species in Fucales. Phylogenetic analysis revealed a close genetic relationship between S. siliquosa and F. vesiculosus, which diverged approximately 8 Mya (5.7-11.0 Mya), corresponding to the Late Miocene (5.3-11.6 Ma). The synonymous substitution rate of mitochondrial genes of phaeophycean species was 1.4 times higher than that of chloroplast genes, but the cp-genomes were more structurally variable than the mt-genomes, with numerous gene losses and rearrangements among the different orders in Phaeophyceae. This study reports the mt- and cp-genomes of the endangered S. siliquosa and improves our understanding of its phylogenetic position in Phaeophyceae and of organellar genomic evolution in brown algae.
Collapse
Affiliation(s)
- Yanshuo Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han-Gil Choi
- Faculty of Biological Science and Institute for Environmental Science, Wonkwang University, Iksan, Korea
| | - Shuangshuang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Min Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Starko S, Bringloe TT, Soto Gomez M, Darby H, Graham SW, Martone PT. Genomic Rearrangements and Sequence Evolution across Brown Algal Organelles. Genome Biol Evol 2021; 13:evab124. [PMID: 34061182 PMCID: PMC8290108 DOI: 10.1093/gbe/evab124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Organellar genomes serve as useful models for genome evolution and contain some of the most widely used phylogenetic markers, but they are poorly characterized in many lineages. Here, we report 20 novel mitochondrial genomes and 16 novel plastid genomes from the brown algae. We focused our efforts on the orders Chordales and Laminariales but also provide the first plastid genomes (plastomes) from Desmarestiales and Sphacelariales, the first mitochondrial genome (mitome) from Ralfsiales and a nearly complete mitome from Sphacelariales. We then compared gene content, sequence evolution rates, shifts in genome structural arrangements, and intron distributions across lineages. We confirm that gene content is largely conserved in both organellar genomes across the brown algal tree of life, with few cases of gene gain or loss. We further show that substitution rates are generally lower in plastid than mitochondrial genes, but plastomes are more variable in gene arrangement, as mitomes tend to be colinear even among distantly related lineages (with exceptions). Patterns of intron distribution across organellar genomes are complex. In particular, the mitomes of several laminarialean species possess group II introns that have T7-like ORFs, found previously only in mitochondrial genomes of Pylaiella spp. (Ectocarpales). The distribution of these mitochondrial introns is inconsistent with vertical transmission and likely reflects invasion by horizontal gene transfer between lineages. In the most extreme case, the mitome of Hedophyllum nigripes is ∼40% larger than the mitomes of close relatives because of these introns. Our results provide substantial insight into organellar evolution across the brown algae.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, Victoria, Canada
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Trevor T Bringloe
- Department of BioSciences, University of Melbourne, Melbourne, Australia
| | - Marybel Soto Gomez
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Hayley Darby
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Patrick T Martone
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Comparative Analysis of Sequence Polymorphism in Complete Organelle Genomes of the ‘Golden Tide’ Seaweed Sargassum horneri between Korean and Chinese Forms. SUSTAINABILITY 2020. [DOI: 10.3390/su12187280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drifting and inundating brown seaweed Sargassum horneri biomass is called “golden tide”, as it resembles golden massive algal blooms like green tides. This phenomenon occurs globally and its serious ecological impacts on coastal ecosystems have recently begun to be paid attention to. In the present study, by sequencing whole organelle genomes of Korean indigenous S. horneri, we aimed to develop novel molecular markers that can be used for differentiating indigenous from nonindigenous individuals. To this end, we analyzed sequence polymorphisms in mitochondrial (mt) and chloroplast (cp) genomes of two Korean benthic samples in comparison to Chinese ones as a reference. We mapped mt genomes of 34,620~34,628 bp and cp genomes of 123,982~124,053 bp for the Korean samples. In comparative analyses, mtDNA cytochrome c oxidase subunit II (cox2) gene showed the highest number of single nucleotide polymorphisms (SNPs) between Korean and Chinese individuals. NADH dehydrogenase subunit 7 (Nad7)-proline tRNA (trnP) intergenic spacer (IGS) in the mt genome showed a 14 bp insertion or deletion (indel) mutation. For the cp genome, we found a total of 54 SNPs, but its overall evolution rate was approximately four-fold lower than the mt genome. Interestingly, analysis of Ka/Ks ratio in the cp genome revealed a signature of positive selection on several genes, although only negative selection prevalent in mt genome. The ‘candidate’ genetic markers that we found can be applied to discriminate between Korean indigenous and nonindigenous individuals. This study will assist in developing a molecular-based early detection method for effectively managing nonindigenous S. horneri in Korean waters.
Collapse
|
7
|
Xu Y, Zhang Z, Zhang L, Zhang C. Novel module and hub genes of distinctive breast cancer associated fibroblasts identified by weighted gene co-expression network analysis. Breast Cancer 2020; 27:1017-1028. [PMID: 32383139 DOI: 10.1007/s12282-020-01101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND As abundant and heterogeneous stromal cells in tumor microenvironment, carcinoma-associated fibroblasts (CAFs) are critically involved in cancer progression. METHODS To identify co-expression module and hub genes of distinctive breast CAFs, weighted gene co-expression network analysis (WGCNA) was conducted based on the expression array results of CAFs from seven chemo-sensitive breast cancer (BC) patients and seven chemo-resistant ones before neo-adjuvant chemotherapy. RESULTS A total of 4916 genes were included in WGCNA, and 12 modules were determined. Module-trait assay showed that the blue module (cor = 0.97, P < 0.001) was associated with CAF-related chemo-resistance, which was enriched mainly as "inflammatory response", "interferon-gamma-mediated signaling" and "NIK/NF-kappaB signaling" pathways. Moreover, CXCL8, CXCL10, CXCL11, PLSCR1, RIPK2 and USP18 were found to be potentially associated with chemo-resistance related to CAFs and prognosis of BC. CONCLUSIONS Our current data offered valuable insights into the molecular mechanisms of distinctive breast CAFs, which was beneficial for revealing how chemo-resistance of BC was initiated.
Collapse
Affiliation(s)
- Yangguang Xu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Chi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Qu XJ, Wang HY, Zhang NN. Plastome structure and phylogenetic position of Rhus typhina (Anacardiaceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Hao-Yu Wang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Na-Na Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, China
| |
Collapse
|
9
|
Yao Y, Li XT, Wu XY, Fan SJ, Zhang XJ, Qu XJ. Characterization of the complete chloroplast genome of an annual halophyte, Chenopodium glaucum (Amaranthaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3898-3899. [PMID: 33366241 PMCID: PMC7707789 DOI: 10.1080/23802359.2019.1687041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The complete chloroplast genome (plastome) of Chenopodium glaucum, an annual halophytic herb, was determined. The plastome was 152,191 bp in size, containing a large single-copy region (83,675 bp), a small single-copy region (18,130 bp), and two inverted repeats regions (25,193 bp). The overall GC content of this plastome was 37.2%. In total, 113 unique genes were annotated including 79 protein-coding genes (PCGs), 30 tRNAs and 4 rRNAs. Phylogenomic analysis showed that C. glaucum was sister to C. album.
Collapse
Affiliation(s)
- Yan Yao
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiao-Tong Li
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xi-Yue Wu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
10
|
Zhang L, Zhang X, Fan S, Zhang Z. Identification of modules and hub genes associated with platinum-based chemotherapy resistance and treatment response in ovarian cancer by weighted gene co-expression network analysis. Medicine (Baltimore) 2019; 98:e17803. [PMID: 31689861 PMCID: PMC6946301 DOI: 10.1097/md.0000000000017803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most prevalent and malignant ovarian tumor.To identify co-expression modules and hub genes correlated with platinum-based chemotherapy resistant and sensitive HGSOC, we performed weighted gene co-expression network analysis (WGCNA) on microarray data of HGSOC with 12 resistant samples and 16 sensitive samples of GSE51373 dataset.A total of 5122 genes were included in WGCNA, and 16 modules were identified. Module-trait analysis identified that the module salmon (cor = 0.50), magenta (cor = 0.49), and black (cor = 0.45) were discovered associated with chemotherapy resistant, and the significance for these platinum-resistant modules were validated in the GSE63885 dataset. Given that the black module was validated to be the most related one, hub genes of this module, alcohol dehydrogenase 1B, cadherin 11, and vestigial like family member 3were revealed to be expressional related with platinum resistance, and could serve as prognostic markers for ovarian cancer.Our analysis might provide insight for molecular mechanisms of platinum-based chemotherapy resistance and treatment response in ovarian cancer.
Collapse
Affiliation(s)
- Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
11
|
Qu XJ, Liu LK, Zhang LY, Zhang XJ, Fan SJ. The complete chloroplast genome of an annual halophyte herb, Suaeda glauca (Amaranthaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2780-2781. [PMID: 33365725 PMCID: PMC7706549 DOI: 10.1080/23802359.2019.1659111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete chloroplast genome (plastome) of Suaeda glauca, an annual halophytic herb, was determined in this study. The plastome was 149,807 bp in size, containing a large single-copy region (82,162 bp), a small single-copy region (18,191 bp), and two inverted repeats regions (24,727 bp). The overall GC content of this plastome was 36.5%. In total, 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs and 4 rRNAs, were annotated. Phylogenomic analysis showed that S. glauca was sister to other Suaeda species.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Li-Kang Liu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
12
|
Zhang XJ, Wang N, Zhang LY, Fan SJ, Qu XJ. Characterization of the complete plastome of Atriplex centralasiatica (Chenopodiaceae), an annual halophytic herb. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2475-2476. [PMID: 33365589 PMCID: PMC7687555 DOI: 10.1080/23802359.2019.1638329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Atriplex centralasiatica, an annual halophytic herb, is one of the most important Chinese herbal medicines, forages and indicator plants for saline-alkali soil. In this study, we report the complete plastome of A. centralasiatica. The plastome was 152,237 bp in length and comprises a large single-copy region (83,721 bp), a small single-copy region (18,096 bp), and a pair of inverted repeats (25,210 bp). It encodes 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs and 4 rRNAs. The overall GC content of this plastome was 37.3%. Phylogenomic analysis based on 21 plastomes revealed that A. centralasiatica was closely related to the genus Chenopodium.
Collapse
Affiliation(s)
- Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Ning Wang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
13
|
Qu XJ, Li XT, Zhang LY, Zhang XJ, Fan SJ. Characterization of the complete chloroplast genome of Suaeda salsa (Amaranthaceae/Chenopodiaceae), an annual succulent halophyte. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2133-2134. [PMID: 33365441 PMCID: PMC7687626 DOI: 10.1080/23802359.2019.1623113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Suaeda salsa, an annual succulent halophytic herb, is one of the major halophyte widely distributed in both saline inland and the intertidal zone. In this study, we report the complete chloroplast genome (plastome) of S. salsa. The plastome was 151,642 bp in length and comprises a large single-copy region (83,502 bp), a small single-copy region (17,780 bp), and a pair of inverted repeats (25,180 bp). It encodes 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs, and four rRNAs. The overall GC content of this plastome was 36.4%. Phylogenomic analysis based on 20 plastomes revealed that S. salsa was closely related to S. malacosperma.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Xiao-Tong Li
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, China
| |
Collapse
|
14
|
Young Park S, Jin Kim Y, Park G, Kim HH. Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 2019; 179:421-428. [PMID: 31003168 DOI: 10.1016/j.colsurfb.2019.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Combination therapy remains a promising approach to ameliorate cerebral ischemia injury. Nevertheless, the primary mechanism of the neuroprotective properties of Dictyopteris divaricata extract-capped gold nanoparticles (DD-GNPs) is not completely understood. DD-GNPs displayed maximum absorption at 525 nm and a diameter of 62.6 ± 1.2 nm, with a zeta potential value of -26.1 ± 0.6 mV. High resolution-transmission electron microscopy confirmed the spherical shape and average diameter (28.01 ± 2.03 nm). Crystalline structure and gold nanoparticle synthesis of DD-GNPs were determined by X-ray powder diffraction, and the presence of elemental gold was confirmed by energy-dispersive X-ray spectroscopy and Fourier transform-infrared spectroscopy. We examined the neuroprotective properties of DD-GNPs and explored their potential mechanisms in human SH-SY5Y neuroblastoma cells treated with oxygen and glucose deprivation/reoxygenation (OGD/R). We found that DD-GNPs inhibited OGD/R-induced release of lactate dehydrogenase (LDH), loss of cell viability, and production of reactive oxygen species. This neuroprotection was accompanied by regulation of apoptosis-related proteins, as indicated by decreased levels of cleaved-caspase-3, cleaved-PARP, cleaved-caspase-9, p53, p21, and Bax, as well as an increased level of Bcl-2. Notably, the neuroprotective effects of DD-GNPs were partially abolished by HO-1, NQO1, Nrf2, and AMPK knockdown. Our results established that DD-GNPs effectively attenuated OGD/R-stimulated neuronal injury, as evidenced by reduced neuronal injury. Even though the accumulating evidence has indicated the low toxicity and minimal side effects of GNPs, experimental clinical trials of DD-GNPs are still limited because of the lack of knowledge regarding the effects of DD-GNPs as neuroprotective agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Yeong Jin Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung-Hoi Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; Department of Laboratory Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
15
|
Zhang L, Tan Y, Fan S, Zhang X, Zhang Z. Phylostratigraphic analysis of gene co-expression network reveals the evolution of functional modules for ovarian cancer. Sci Rep 2019; 9:2623. [PMID: 30796309 PMCID: PMC6384884 DOI: 10.1038/s41598-019-40023-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/23/2019] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer (OV) is an extremely lethal disease. However, the evolutionary machineries of OV are still largely unknown. Here, we used a method that combines phylostratigraphy information with gene co-expression networks to extensively study the evolutionary compositions of OV. The present co-expression network construction yielded 18,549 nodes and 114,985 edges based on 307 OV expression samples obtained from the Genome Data Analysis Centers database. A total of 20 modules were identified as OV related clusters. The human genome sequences were divided into 19 phylostrata (PS), the majority (67.45%) of OV genes was already present in the eukaryotic ancestor. There were two strong peaks of the emergence of OV genes screened by hypergeometric test: the evolution of the multicellular metazoan organisms (PS5 and PS6, P value = 0.002) and the emergence of bony fish (PS11 and PS12, P value = 0.009). Hence, the origin of OV is far earlier than its emergence. The integrated analysis of the topology of OV modules and the phylogenetic data revealed an evolutionary pattern of OV in human, namely, OV modules have arisen step by step during the evolution of the respective lineages. New genes have evolved and become locked into a pathway, where more and more biological pathways are fixed into OV modules by recruiting new genes during human evolution.
Collapse
Affiliation(s)
- Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Jinan, 250000, Shandong, China
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
| |
Collapse
|
16
|
Qu XJ. Chloroplast phylogenomics of Calocedrus (Cupressaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1598814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiao-Jian Qu
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
17
|
Qu XJ. Complete plastome sequence of an endangered species, Calocedrus rupestris (Cupressaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1565972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
18
|
Liu F, Zhang Y, Bi Y, Chen W, Moejes FW. Understanding the Evolution of Mitochondrial Genomes in Phaeophyceae Inferred from Mitogenomes of Ishige okamurae (Ishigeales) and Dictyopteris divaricata (Dictyotales). J Mol Evol 2019; 87:16-26. [PMID: 30604018 DOI: 10.1007/s00239-018-9881-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/15/2018] [Indexed: 11/29/2022]
Abstract
To gain further insight into the evolution of mitochondrial genomes (mtDNAs) in Phaeophyceae, the first recorded characterization of an Ishigeophycidae mtDNA from Ishige okamurae (Yendo), and only the second recorded characterization of a Dictyotophycidae mtDNA from Dictyopteris divaricata (Okamura) Okamura are presented in this study. The 35,485 bp I. okamurae mtDNA contained 36 protein-coding genes (PCGs), 22 tRNAs, three rRNAs, and four open reading frames (orfs), and the 32,021 bp D. divaricata mtDNA harbored 35 PCGs, 25 tRNAs, three rRNAs, and three orfs. The A + T content in D. divaricata (61.69%) was the lowest recorded in sequenced brown algal mtDNAs. The I. okamurae mtDNA displayed unique genome features including an elevated start-codon usage bias for GTG, while the organization of D. divaricata mtDNA was identical to that of Dictyota dichotoma. Phylogenetic analysis based on the amino acid sequence dataset of 35 PCGs indicated that I. okamurae (Ishigeophycidae) diverged early from the Fucophycidae-Dictyotophycidae complex, which was confirmed by the comparative analysis of the mitogenome structure. The novel mitogenome data made available by this study have improved our understanding of the evolution, phylogenetics, and genomics of brown algae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, Shandong, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China.
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Weizhou Chen
- Marine Biology Institute, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | | |
Collapse
|
19
|
Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L. Identification of Salt Stress Responding Genes Using Transcriptome Analysis in Green Alga Chlamydomonas reinhardtii. Int J Mol Sci 2018; 19:E3359. [PMID: 30373210 PMCID: PMC6274750 DOI: 10.3390/ijms19113359] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Salinity is one of the most important abiotic stresses threatening plant growth and agricultural productivity worldwide. In green alga Chlamydomonas reinhardtii, physiological evidence indicates that saline stress increases intracellular peroxide levels and inhibits photosynthetic-electron flow. However, understanding the genetic underpinnings of salt-responding traits in plantae remains a daunting challenge. In this study, the transcriptome analysis of short-term acclimation to salt stress (200 mM NaCl for 24 h) was performed in C. reinhardtii. A total of 10,635 unigenes were identified as being differently expressed by RNA-seq, including 5920 up- and 4715 down-regulated unigenes. A series of molecular cues were screened for salt stress response, including maintaining the lipid homeostasis by regulating phosphatidic acid, acetate being used as an alternative source of energy for solving impairment of photosynthesis, and enhancement of glycolysis metabolism to decrease the carbohydrate accumulation in cells. Our results may help understand the molecular and genetic underpinnings of salt stress responses in green alga C. reinhardtii.
Collapse
Affiliation(s)
- Ning Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Zhixin Qian
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Manwei Luo
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| |
Collapse
|