1
|
Liu S, Li M, Han C, Li S, Zhang J, Peng C, Zhang Y. Chromosome level genome assembly of giant freshwater prawn (Macrobrachium rosenbergii). Sci Data 2024; 11:1181. [PMID: 39477970 PMCID: PMC11525972 DOI: 10.1038/s41597-024-04016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) has many advantages in aquaculture, such as fast growth rate, short breeding cycle and good nutrition, which makes it a freshwater shrimp with high economic value. Herein, high-quality chromosome-level genome of both female and male prawns were obtained by combining Illumina paired-end sequencing, PacBio single molecule sequencing technique and High-through chromosome conformation capture (Hi-C) technologies. In ZZ male prawn, a final contig assembly of 3118.58 Mb with a N50 length of 956,237 bp was obtained. In WW female prawn, a final contig assembly of 3333.31 Mb with a N50 length of 1,143,555 bp was obtained. The assembled genome sequences from prawns were anchored to 59 chromosomes. Moreover, the sex chromosomes including W chromosome and Z chromosome were generated in prawn with the length of 36.23 Mb and 27.33 Mb, respectively. The sequence similarity of Z chromosome and W chromosome reached to 74.90%. The high-quality genome resource will be useful for further molecular breeding and functional genomic research of giant freshwater prawns.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Meihui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Comparative Transcriptomics of Gonads Reveals the Molecular Mechanisms Underlying Gonadal Development in Giant Freshwater Prawns (Macrobrachium rosenbergii). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is a prawn that has economic significance throughout the world. It exhibits sex-related growth dimorphism, whereby the males grow significantly more rapidly than the females. Therefore, a study on the molecular regulatory mechanism, which underlies the sexual differentiation of M. rosenbergii, is of both scientific and commercial importance. However, a scarcity of genomic and transcriptomic resources severely limits our knowledge of the sexual differentiation mechanisms in M. rosenbergii. Here, transcriptome sequencing of several gonadic samples of males and females in M. rosenbergii was performed to investigate the molecular basis underlying gonadal development. Our results showed that 2149 unigenes presented as differentially expressed genes (DEGs) in the ovaries of females compared to the testes of males, which contained 484 down-regulated and 1665 up-regulated genes. Enrichment analysis of DEGs revealed many of these genes to be related to sexual differentiation and gonadal development. From our transcriptome analyses, and as confirmed by quantitative real-time PCR, male-related genes (Mrr, MRPINK, IR, IAGBP, TESK1, and dsx) in the testes were significantly up-regulated, and female-related genes (ERR, Sxl3, cyclinB, Dmrt99B, PPP2A, and ADCY9) in the ovaries were also significantly up-regulated. This indicates the potential role these genes play in the gonadal development of M. rosenbergii. Furthermore, multiple signal transduction pathways relating to gonadal maturation and spermatogenesis, including MAPK, were identified herein. Our data also supports previous ideas that IAG and IAGBP-IR signaling schemes could help in the regulation of testis’ development in M. rosenbergii and the ERR gene could regulate ovarian development by affecting the expression of cyclinB, PPP2A, and ADCY9. The data from this study provides incredibly usefully genomic resources for future research on the sexual differentiation and practical aquaculture of M. rosenbergii.
Collapse
|
4
|
Xu W, Liang M, Yang X, Wang H, Luo M. Genomic resources of broomcorn millet: demonstration and application of a high-throughput BAC mapping pipeline. BMC Genom Data 2021; 22:46. [PMID: 34724898 PMCID: PMC8561967 DOI: 10.1186/s12863-021-01003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background With high-efficient water-use and drought tolerance, broomcorn millet has emerged as a candidate for food security. To promote its research process for molecular breeding and functional research, a comprehensive genome resource is of great importance. Results Herein, we constructed a BAC library for broomcorn millet, generated BAC end sequences based on the clone-array pooled shotgun sequencing strategy and Illumina sequencing technology, and integrated BAC clones into genome by a novel pipeline for BAC end profiling. The BAC library consisted of 76,023 clones with an average insert length of 123.48 Kb, covering about 9.9-fold of the 850 Mb genome. Of 9216 clones tested using our pipeline, 8262 clones were mapped on the broomcorn millet cultivar longmi4 genome. These mapped clones covered 308 of the 829 gaps left by the genome. To our knowledge, this is the only BAC resource for broomcorn millet. Conclusions We constructed a high-quality BAC libraray for broomcorn millet and designed a novel pipeline for BAC end profiling. BAC clones can be browsed and obtained from our website (http://eightstarsbio.com/gresource/JBrowse-1.16.5/index.html). The high-quality BAC clones mapped on genome in this study will provide a powerful genomic resource for genome gap filling, complex segment sequencing, FISH, functional research and genetic engineering of broomcorn millet. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01003-z.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjie Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xue Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Zhou LX, Liu X, Ye BQ, Liu Y, Tan SP, Ma KY, Qiu GF. Molecular characterization of ovary-specific gene Mrfem-1 and siRNA-mediated regulation on targeting Mrfem-1 in the giant freshwater prawn, Macrobrachium rosenbergii. Gene 2020; 754:144891. [PMID: 32535048 DOI: 10.1016/j.gene.2020.144891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Characterized by ankyrin repeat motifs, the feminization-1 (fem-1) gene plays an essential role in sex determination/differentiation in Caenorhabditis elegans. However, there are only a few reports on fem-1 in crustaceans. In this study, a fem-1 gene (Mrfem-1) was first isolated from the giant freshwater prawn Macrobrachium rosenbergii. The full-length cDNA of Mrfem-1 was 2607 bp long, containing an open reading frame encoding 615 amino acids, and presenting eight ankyrin repeats. The full-length cDNA has been submitted to GenBank with the accession no. MT160093. According to the RT-PCR results, Mrfem-1 was exclusively expressed in the ovary. The expression level of Mrfem-1 had increased with ovarian maturation and reached the highest peak at vitellogenic stage. In situ hybridization results showed that positive signals were concentrated in the cytoplasm of previtellogenic stage, and scattered in the cytoplasm and follicular cells at vitellogenic stage, suggesting that Mrfem-1 might be associated with ovarian maturation. Moreover, two effective siRNAs targeting Mrfem-1 were found and their effectiveness verified in vitro. These results on Mrfem-1 will help us to better understand the fem family and provide a new resource for subsequent investigations of siRNA-mediated regulation on ovarian development in M. rosenbergii.
Collapse
Affiliation(s)
- Ling-Xia Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China
| | - Xue Liu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China
| | - Bao-Qing Ye
- Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore
| | - Yun Liu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China
| | - Shuang-Pei Tan
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China
| | - Ke-Yi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China.
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
7
|
Teng J, Zhao Y, Chen HJ, Wang H, Ji XS. Transcriptome Profiling and Analysis of Genes Associated with High Temperature-Induced Masculinization in Sex-Undifferentiated Nile Tilapia Gonad. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:367-379. [PMID: 32088770 DOI: 10.1007/s10126-020-09956-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Artificially high temperatures during critical thermosensitive periods (TSPs) can induce the sex reversal of Nile tilapia (Oreochromis niloticus) females into pseudomales; Nile tilapia is a GSD + TE (genotypic plus temperature effects) fish species. Previous studies have shown that water temperature affects the expression levels of many genes in the gonad or brain in various teleost species. However, few studies on the effect of temperature at the whole-gonad transcriptomic level in the early stage of sex differentiation have been reported in fish species exhibiting GSD + TE. In this study, RNA-Seq was performed to characterize the transcriptomic profile and identify genes exhibiting temperature- and sex-biased expressions in the Nile tilapia gonad at 21 dpf. A total of 42 genes were found to be associated with both high-temperature treatment and sex development, as the expression levels of these genes differed in both FC (female control) vs MC (male control) and FC vs FT (high temperature-treated females in the TSP). Among these genes, the transcriptional alterations of many male sex determination and differentiation genes, such as Dmrt1, Gsdf, and the DNA damage-inducible protein GADD45 alpha, suggested that the male pathway is initiated after high-temperature treatment and that its initiation may play a role in high temperature-induced masculinization in Nile tilapia. The qRT-PCR validation results for thirteen differentially expressed genes showed that the Pearson's correlation of the log10 fold change values between the qPCR and RNA-Seq results was 0.70 (p < 0.001), indicating the accuracy and reliability of the RNA-Seq results. Our study provides insights into how high-temperature treatment induces the sex reversal of Nile tilapia females.
Collapse
Affiliation(s)
- Jian Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Hong Ju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Xiang Shan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China.
| |
Collapse
|
8
|
Comparative Transcriptome Analysis of Gonads for the Identification of Sex-Related Genes in Giant Freshwater Prawns ( Macrobrachium Rosenbergii) Using RNA Sequencing. Genes (Basel) 2019; 10:genes10121035. [PMID: 31835875 PMCID: PMC6947849 DOI: 10.3390/genes10121035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M. rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M. rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1196 base pair (bp) and N50 of 2195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.
Collapse
|
9
|
Zhang B, Zhao N, Jia L, Peng K, Che J, Li K, He X, Sun J, Bao B. Seminal Plasma Exosomes: Promising Biomarkers for Identification of Male and Pseudo-Males in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:310-319. [PMID: 30863906 DOI: 10.1007/s10126-019-09881-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
In mammals, small RNAs enclosed in exosomes have been identified as appropriate signatures for disease diagnosis. However, there is limited information on exosomes derived from seminal plasma, and few studies have reported analyzed the composition of exosomes and enclosed small RNAs in fish. The half-smooth tongue sole (Cynoglossus semilaevis) is an economically important fish for aquaculture, and it exhibits sexual dimorphism: the female gender show higher growth rates and larger body sizes than males. Standard karyotype analysis and artificial gynogenesis tests have revealed that this species uses heterogametic sex determination (ZW/ZZ), and so-called sex-reversed pseudo-males exist. In this study, we successfully identified exosomes in the seminal plasma of C. semilaevis; to the best of our knowledge, this is the first report of exosomes in fish seminal plasma. Analysis of the nucleotide composition showed that miRNAs were dominant in the exosomes, and the miRNAs were sequenced and compared to identify signature miRNAs as sexual biomarkers. Moreover, target genes of the signature miRNAs were predicted by sequence matching and annotation. Finally, four miRNAs (dre-miR-141-3P, dre-miR-10d-5p, ssa-miR-27b-3p, and ssa-miR-23a-3p) with significant differential expression in the males and pseudo-males were selected from the signature candidate miRNAs as markers for sex identification, and their expression profiles were verified using real-time quantitative PCR. Our findings could provide an effective detection method for sex differentiation in fish.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Sheng Fa Biotechnology Co, Ltd, Tianjin, China
| | - Lei Jia
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Kang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoxu He
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|