1
|
Wu X, Wang Y, Meador JP, Zhou GJ, Xu W, Hua F, Liu W, Liu X, Wang Z. Biodegradation pathways and mechanisms of 17α-ethynylestradiol via functional enzymes in the freshwater microalga Scenedesmus quadricauda. WATER RESEARCH 2025; 281:123569. [PMID: 40184709 DOI: 10.1016/j.watres.2025.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
17α-ethynylestradiol (EE2) is a potent synthetic hormone exhibiting very high estrogenic activity and low rates of biodegradation. The removal capabilities of EE2 by bacteria, fungi and algal-bacterial symbiotic systems have attracted considerable attention recently. Specifically, algal biodegradation has been explored recently; however, the pathway and mechanisms of EE2 degradation have remained largely unknown. Therefore, we investigated the pathways and mechanisms by which EE2 is degraded by the freshwater microalga Scenedesmus quadricauda. After exposure for 10.5 d, the algal species was able to metabolize 58 % of a 15 mg/L solution of EE2, with the highest removal rate of 13 % occurring at 1.5 d An Ultra Performance Liquid Chromatography-Q-Exactive Orbitrap Mass Spectrometry was used innovatively to identify the biodegradation products of EE2 through non-target screening, followed by the verification of standard compounds. Transcriptomic analysis and molecular docking analysis revealed several degradation pathways and mechanisms by this algal species. One pathway was the demethylation of EE2 to estradiol (E2) by short-chain dehydrogenase/reductase. Subsequently, we also observed interconversion of estrone (E1) and E2 by 17β-hydroxysteroid dehydrogenase through hydroxylation or ketonization, hydroxylation of E1 to 16α-hydroxyestrone (16-OH E1) by cytochrome P450 and flavin-containing monooxygenase. A second pathway was methoxylation of E2 to estradiol acetate by catechol O-methyltransferase. As a result, the ethynyl group was degraded to hydroxy, ketone and methoxyl groups, which promotes EE2 degradation. Considering that EE2 pollution could result in adverse effects for aquatic organisms, the results of this study provide insights and a comprehensive approach for practical and effective bioremediation of EE2 contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaomin Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - James P Meador
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Wenju Xu
- College of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Feng Hua
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Melo de Queiroz T, Valdes TA, Leitão A, Porto ALM. Bio-oxidation of progesterone by Penicillium oxalicum CBMAI 1185 and evaluation of the cytotoxic activity. Steroids 2024; 205:109392. [PMID: 38452910 DOI: 10.1016/j.steroids.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12β-hydroxyandrostenedione 1b and 1β-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.
Collapse
Affiliation(s)
- Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Talita A Valdes
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Pang C, Chen YH, Bian HH, Zhang JP, Su L, Han H, Zhang W. Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44. Molecules 2023; 28:7784. [PMID: 38067514 PMCID: PMC10708211 DOI: 10.3390/molecules28237784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (2-16). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Cheng Pang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Yu-Hong Chen
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hui-Hui Bian
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Jie-Ping Zhang
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hua Han
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Wen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| |
Collapse
|
4
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Zanin LL, de Queiroz TM, Porto ALM. Microbial transformation of Knoevenagel adducts by whole cells of Brazilian marine-derived fungi: A green approach to remove organic compounds from the aqueous medium. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lucas Lima Zanin
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
6
|
Tian H, Li XP, Zhao J, Gao HW, Xu QM, Wang JW. Biotransformation of artemisinic acid to bioactive derivatives by endophytic Penicillium oxalicum B4 from Artemisia annua L. PHYTOCHEMISTRY 2021; 185:112682. [PMID: 33582588 DOI: 10.1016/j.phytochem.2021.112682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
As a biosynthetic precursor of the antimalarial drug artemisinin, artemisinic acid (AA) is abundant in Artemisia annua L. with a content of 8-10-fold higher than artemisinin, but less effective. In this study, the biotransformation of AA was carried out with an endophytic fungus Penicillium oxalicum B4 to extend its utility. After 10-day-culture of the endophyte with AA at 2 mg/mL, eight biotransformation metabolites were isolated from the culture broth, including five undescribed metabolites, namely 3α,14-dihydroxyartemisinic acid, 14-hydroxy-3-oxo-artemisinic acid, 15-hydroxy-3-oxo-artemisinic acid, 12, 15-artemisindioic acid and 1,2,3,6-tetradehydro-12, 15-artemisindioic acid. The fungal enzymes possess the selective capacity to hydroxylate, carbonylate and ketonize the allyl group of AA. The major biotransformation metabolite was the hydroxylated product 3-α-hydroxyartemisinic acid (33.3%) in the cultures of early stage (day 1-6), whereas most of the other biotransformation products were synthesized in the later stage (day 8-10). Compared with AA, some metabolites (3α,14-dihydroxyartemisinic acid, 15-hydroxy-3-oxo-artemisinic acid and 1,2,3,6-tetradehydro-12, 15-artemisindioic acid) possessed stronger cytotoxic activity to the human colon carcinoma cell line (LS174T) and promyelocytic leukemia cell line (HL-60). The metabolites 12, 15-artemisindioic acid and 3-α-hydroxyartemisinic acid exhibited significant inhibitory activity to the lipopolysaccharide-induced nitrite production of RAW 264.7 cells at 10.00 μM and 2.50 μM, respectively. The results demonstrated the potential of fungal endophytes on biotransforming AA to its bioactive derivatives.
Collapse
Affiliation(s)
- Hao Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Hong Wei Gao
- College of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Qiong Ming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|