1
|
Barkan R, Cooke I, Watson SA, Strugnell JM. Synthesis of transcriptomic studies reveals a core response to heat stress in abalone (genus Haliotis). BMC Genomics 2025; 26:474. [PMID: 40361012 PMCID: PMC12070547 DOI: 10.1186/s12864-025-11680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND As climate change causes marine heat waves to become more intense and frequent, marine species increasingly suffer from heat stress. This stress can result in reduced growth, disrupted breeding cycles, vulnerability to diseases and pathogens, and increased mortality rates. Abalone (genus Haliotis) are an ecologically significant group of marine gastropods and are among the most highly valued seafood products. However, heat stress events have had devastating impacts on both farmed and wild populations. Members of this genus are among the most susceptible marine species to climate change impacts, with over 40% of all abalone species listed as threatened with extinction. This has motivated researchers to explore the genetics linked to heat stress in abalone. A substantial portion of publicly available studies has employed transcriptomic approaches to investigate abalone genetic response to heat stress. However, to date, no meta-analysis has been conducted to determine the common response to heat stress (i.e. the core response) across the genus. This study uses a standardized bioinformatic pipeline to reanalyze and compare publicly available RNA-seq datasets from different heat stress studies on abalone. RESULTS Nine publicly available RNA-seq datasets from nine different heat-stress studies on abalone from seven different abalone species and three hybrids were included in the meta-analysis. We identified a core set of 74 differentially expressed genes (DEGs) in response to heat stress in at least seven out of nine studies. This core set of DEGs mainly included genes associated with alternative splicing, heat shock proteins (HSPs), Ubiquitin-Proteasome System (UPS), and other protein folding and protein processing pathways. CONCLUSIONS The detection of a consistent set of genes that respond to heat stress across various studies, despite differences in experimental design (e.g. stress intensity, species studied-geographical distribution, preferred temperature range, etc.), strengthens our proposal that these genes are key elements of the heat stress response in abalone. The identification of the core response to heat stress in abalone lays an important foundation for future research. Ultimately, this study will aid conservation efforts and aquaculture through the identification of resilient populations, genetic-based breeding programs, possible manipulations such as early exposure to stress, gene editing and the use of immunostimulants to enhance thermal tolerance.
Collapse
Affiliation(s)
- Roy Barkan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
Baliga N, Stankiewicz K, Valenzuela J, Turkarslan S, Wu WJ, Gomez-Campo K, Locatelli N, Conn T, Radice V, Parker K, Alderdice R, Bay L, Voolstra C, Barshis D, Baums I. Alternative splicing in a coral during heat stress acclimation and recovery. RESEARCH SQUARE 2025:rs.3.rs-6025431. [PMID: 40235473 PMCID: PMC11998799 DOI: 10.21203/rs.3.rs-6025431/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Climate change has caused drastic declines in corals. As sessile organisms, corals acclimate to environmental shifts through genome-wide changes in gene expression, epigenetic modifications, and alterations in microbiome composition. However, alternative splicing (AS), a conserved mechanism of stress response in many organisms, has been under-explored in corals. Using short-term acute thermal stress assays, we investigated patterns of AS in the scleractinian coral Acropora cervicornis during response to low (33°C), medium (35°C), and high (37°C) heat stress and subsequent overnight recovery. Our findings demonstrate reproducible dynamic shifts in AS of at least 40 percent of all genes during response to heat treatment and the recovery phase. The relative proportion of AS increased in response to heat stress and was primarily dominated by intron retention in specific classes of transcripts, including those related to splicing regulation itself. While AS returned to baseline levels post-exposure to low heat, AS persisted even after reprieve from higher levels of heat stress, which was associated with irreversible loss of photosynthetic efficiency of the symbiont. Our findings demonstrate that, although animals, corals are more plant-like in their likely usage of AS for regulating thermal stress response and recovery.
Collapse
|
3
|
Li P, Sun Y, Wen H, Qi X, Zhang Y, Sun D, Liu C, Li Y. Transcriptomic Analysis Reveals Dynamics of Gene Expression in Liver Tissue of Spotted Sea Bass Under Acute Thermal Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1336-1349. [PMID: 39432208 DOI: 10.1007/s10126-024-10375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
The spotted sea bass (Lateolabrax maculatus), a eurythermal species, exhibits strong adaptability to temperature variations and presents an ideal model for studying heat stress-responsive mechanisms in fish. This study examined the liver transcriptome of spotted sea bass over a 24-h period following exposure to elevated temperatures, rising from 25 to 32 °C. The results revealed significant alterations in gene expression in response to this thermal stress. Specifically, we identified 1702, 1199, 3128, and 2636 differentially expressed genes at 3, 6, 12, and 24 h post-stress, respectively. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify specific gene modules responsive to heat stress, containing hub genes such as aco2, eci2, h6pd, suclg1, fgg, fga, fgb, f2, and apoba, which play central roles in the heat stress response. Enrichment analyses via KEGG and GSEA indicated that upregulated differentially expressed genes (DEGs) are predominantly involved in protein processing in the endoplasmic reticulum, while downregulated genes are primarily associated with the AGE-RAGE signaling pathways. Additionally, 272 genes exhibited differential alternative splicing, primarily through exon skipping, underscoring the complexity of transcriptomic adaptations. These findings provide deeper insights into the molecular responses to thermal stress and are crucial for advancing the breeding of heat-resistant strains of spotted sea bass.
Collapse
Affiliation(s)
- Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yalong Sun
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Cong Liu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
- Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100/572025, Shandong/Sanya, Hainan, China.
| |
Collapse
|
4
|
Liu C, Wen H, Zheng Y, Zhang C, Zhang Y, Wang L, Sun D, Zhang K, Qi X, Li Y. Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass ( Lateolabrax maculatus). Int J Mol Sci 2024; 25:12098. [PMID: 39596165 PMCID: PMC11594061 DOI: 10.3390/ijms252212098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Temperature is a crucial environmental factor for fish. Elevated temperatures trigger various physiological and molecular responses designed to maintain internal environmental homeostasis and ensure the proper functioning of the organism. In this study, we measured biochemical parameters and performed mRNA-miRNA integrated transcriptomic analysis to characterize changes in gene expression profiles in the muscle tissue of spotted sea bass (Lateolabrax maculatus) under heat stress. The measurement of biochemical parameters revealed that the activities of nine biochemical enzymes (ALP, γ-GT, AST, GLU, CK, ALT, TG, LDH and TC) were significantly affected to varying degrees by elevated temperatures. A total of 1940 overlapping differentially expressed genes (DEGs) were identified among the five comparisons in the muscle tissue after heat stress. Protein-protein interaction (PPI) analysis of DEGs indicated that heat shock protein genes (HSPs) were deeply involved in the response to heat stress. In addition, we detected 462 differential alternative splicing (DAS) events and 618 DAS genes, which are closely associated with sarcomere assembly in muscle, highlighting the role of alternative splicing in thermal response regulation. Moreover, 32 differentially expressed miRNAs (DEMs) were identified in response to heat stress, and 599 DEGs were predicted as potential target genes of those DEMs, generating 846 DEG-DEM negative regulatory pairs potentially associated with thermal response. Function enrichment analysis of the target genes suggested that lipid metabolism-related pathways and genes were regulated by miRNAs. By analyzing PPIs of target genes, we identified 28 key negative regulatory pairs, including 13 miRNAs (such as lma-miR-122, lma-miR-200b-5p and novel-miR-444) and 15 target genes (such as hspa13, dnaja1, and dnajb1a). This study elucidates the molecular mechanisms of response to high-temperature stress and offers valuable information for the selection and breeding of heat-tolerant strains of spotted sea bass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Sapozhnikova YP, Koroleva AG, Sidorova TV, Potapov SA, Epifantsev AA, Vakhteeva EA, Tolstikova LI, Glyzina OY, Yakhnenko VM, Cherezova VM, Sukhanova LV. Transcriptional Rearrangements Associated with Thermal Stress and Preadaptation in Baikal Whitefish ( Coregonus baicalensis). Animals (Basel) 2024; 14:3077. [PMID: 39518801 PMCID: PMC11545380 DOI: 10.3390/ani14213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, we describe the transcriptional profiles of preadapted and non-adapted one-month-old juvenile Baikal whitefish after heat shock exposure. Preadapted fish were exposed to a repeated thermal rise of 6 °C above the control temperature every three days throughout their embryonic development. One month after hatching, preadapted and non-adapted larvae were either kept at control temperatures (12 °C) or exposed to an acute thermal stress (TS) of 12 °C above the control temperature. In response to this acute stress, an increase in HSP gene expression (HSP-30, HSP-40, HSP-47, HSP-70, and HSP-90) and TRIM16 was detected, independent of preadaptation. The expression levels of genes responsible for the response to oxygen levels, growth factors and the immune response, HBA, HBB, Myosin VI, Myosin VII, MHC, Plumieribetin, TnI, CYP450, and LDB3 were higher in individuals that had previously undergone adaptation. Genes responsible for the regulation of metabolism, MtCK, aFGF, ARF, CRYGB, and D-DT, however, increased their activity in non-adapted individuals. This information on transcriptional profiles will contribute to further understanding of the mechanisms of adaptation of whitefish to their environment.
Collapse
Affiliation(s)
- Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia; (T.V.S.); (S.A.P.); (A.A.E.); (E.A.V.); (L.I.T.); (O.Y.G.); (V.M.Y.); (V.M.C.); (L.V.S.)
| | - Anastasiya G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia; (T.V.S.); (S.A.P.); (A.A.E.); (E.A.V.); (L.I.T.); (O.Y.G.); (V.M.Y.); (V.M.C.); (L.V.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhao X, Wang Y, Wang Z, Luo T, Huang J, Shao J. Analysis of Differential Alternative Splicing in Largemouth Bass After High Temperature Exposure. Animals (Basel) 2024; 14:3005. [PMID: 39457935 PMCID: PMC11505094 DOI: 10.3390/ani14203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Temperature is one of the critical factors affecting the physiological functions of fish. With ongoing global warming, changes in water temperature have a profound impact on fish species. Alternative splicing, being a significant mechanism for gene expression regulation, facilitates fish to adapt and thrive in dynamic and varied aquatic environments. Our study used transcriptome sequencing to analyze alternative splicing in largemouth bass gills at 34 °C for 24 h. The findings indicated an increase in both alternative splicing events and alternative splicing genes after high temperature treatment. Specifically, the comparative analysis revealed a total of 674 differential alternative splicing events and 517 differential alternative splicing genes. Enrichment analysis of differential alternative splicing genes revealed significant associations with various gene ontology (GO) terms and KEGG pathways, particularly in immune-related pathways like necroptosis, apoptosis, and the C-type lectin receptor signaling pathway. These results emphasize that some RNA splicing-related genes are involved in the response of largemouth bass to high temperatures.
Collapse
Affiliation(s)
- Xianxian Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Yizhou Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| | - Tianma Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Jun Huang
- Hubei Fisheries Science Research Institute, Wuhan 430077, China;
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| |
Collapse
|
7
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Zhao G, Liu Z, Quan J, Lu J, Li L, Pan Y. Ribosome Profiling and RNA Sequencing Reveal Translation and Transcription Regulation under Acute Heat Stress in Rainbow Trout ( Oncorhynchus mykiss, Walbaum, 1792) Liver. Int J Mol Sci 2024; 25:8848. [PMID: 39201531 PMCID: PMC11354268 DOI: 10.3390/ijms25168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) is an important economic cold-water fish that is susceptible to heat stress. To date, the heat stress response in rainbow trout is more widely understood at the transcriptional level, while little research has been conducted at the translational level. To reveal the translational regulation of heat stress in rainbow trout, in this study, we performed a ribosome profiling assay of rainbow trout liver under normal and heat stress conditions. Comparative analysis of the RNA-seq data with the ribosome profiling data showed that the folding changes in gene expression at the transcriptional level are moderately correlated with those at the translational level. In total, 1213 genes were significantly altered at the translational level. However, only 32.8% of the genes were common between both levels, demonstrating that heat stress is coordinated across both transcriptional and translational levels. Moreover, 809 genes exhibited significant differences in translational efficiency (TE), with the TE of these genes being considerably affected by factors such as the GC content, coding sequence length, and upstream open reading frame (uORF) presence. In addition, 3468 potential uORFs in 2676 genes were identified, which can potentially affect the TE of the main open reading frames. In this study, Ribo-seq and RNA-seq were used for the first time to elucidate the coordinated regulation of transcription and translation in rainbow trout under heat stress. These findings are expected to contribute novel data and theoretical insights to the international literature on the thermal stress response in fish.
Collapse
Affiliation(s)
| | - Zhe Liu
- Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.Q.); (J.L.); (L.L.); (Y.P.)
| | | | | | | | | |
Collapse
|
9
|
Xiao Y, Gao L, Zhao X, Zhao W, Mai L, Ma C, Han Y, Li X. Novel prognostic alternative splicing events in colorectal Cancer: Impact on immune infiltration and therapy response. Int Immunopharmacol 2024; 139:112603. [PMID: 39043103 DOI: 10.1016/j.intimp.2024.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE This study aims to comprehensively analyze alternative splicing (AS) features in colorectal cancer (CRC) using integrative multi-omics and to elucidate their relationship with the CRC immune microenvironment. METHODS Transcriptomic data, clinical information, and Percent Spliced In (PSI) values of AS events for CRC patients were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Differentially expressed AS events were identified. Univariate Cox analysis was used to pinpoint prognosis-related AS events. A prognostic risk model was developed and validated using multivariate Cox analysis, patient survival analysis, and the area under the receiver operating characteristic (ROC) curve (AUC). Gene Set Enrichment Analysis (GSEA), immune infiltration, immunotherapy, chemotherapy sensitivity analyses, and regulatory relationships between AS events and splicing factors (SFs) were conducted. Single-cell sequencing was used to study the distribution of key factors. siRNA and overexpression vectors were utilized to silence/overexpress BCAS1 in CRC cells and evaluate their effects on cell growth, migration, and invasion. Furthermore, the interaction between BCAS1 and ANO7 pre-mRNA was investigated using RIP-PCR. RESULTS 82 prognosis-related AS events were identified in CRC patients. A 15-AS prognostic model was constructed, which correlated with immune cell infiltration and showed differences in immunotherapy and chemotherapy sensitivity. BCAS1 was identified as a potential regulator of the ANO7|58341|AT splicing event in CRC. Single-cell sequencing analysis revealed the distribution of BCAS1 and ANO7 in cancer stem cells. In vitro experiments demonstrated that overexpression of BCAS1 and silencing of ANO7 inhibit the proliferation, migration, and invasion of CRC cells. Moreover, BCAS1 suppresses the progression of CRC by modulating ANO7 alternative splicing. CONCLUSION This study provides new insights into the role of alternative splicing in colorectal cancer, particularly the potential regulatory action of BCAS1 on the ANO7|58341|AT splicing event. It also identifies the impact of alternative splicing on the tumor microenvironment and potential implications for immunotherapy, highlighting its relevance for the in-depth study and treatment of CRC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Liangqing Gao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Xiaojuan Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Wang Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Lei Mai
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Chengmin Ma
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Yanzhi Han
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| |
Collapse
|
10
|
Gao S, Tan S, Purcell SL, Whyte SK, Parrish K, Zhong L, Zheng S, Zhang Y, Zhu R, Jahangiri L, Li R, Fast MD, Cai W. A comparative analysis of alternative splicing patterns in Atlantic salmon (Salmo salar) in response to Moritella viscosa and sea lice (Lepeophtheirus salmonis) infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109606. [PMID: 38705547 DOI: 10.1016/j.fsi.2024.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.
Collapse
Affiliation(s)
- Shengnan Gao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China; State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Kathleen Parrish
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Liang Zhong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Shucheng Zheng
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Yuxuan Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ruoxi Zhu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ladan Jahangiri
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada; State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
11
|
Liu Y, Tian C, Yang Z, Huang C, Jiao K, Yang L, Duan C, Zhang Z, Li G. Effects of Chronic Heat Stress on Growth, Apoptosis, Antioxidant Enzymes, Transcriptomic Profiles, and Immune-Related Genes of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2024; 14:1006. [PMID: 38612245 PMCID: PMC11010891 DOI: 10.3390/ani14071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic heat stress can have detrimental effects on the survival of fish. This study aimed to investigate the impact of prolonged high temperatures on the growth, antioxidant capacity, apoptosis, and transcriptome analysis of Hong Kong catfish (Clarias fuscus). By analyzing the morphological statistics of C. fuscus subjected to chronic high-temperature stress for 30, 60, and 90 days, it was observed that the growth of C. fuscus was inhibited compared to the control group. The experimental group showed a significant decrease in body weight and body length compared to the control group after 60 and 90 days of high-temperature stress (p < 0.05, p < 0.01). A biochemical analysis revealed significant alterations in the activities of three antioxidant enzymes superoxide dismutase activity (SOD); catalase activity (CAT); glutathione peroxidase activity (GPx), the malondialdehyde content (MDA), and the concentrations of serum alkaline phosphatase (ALP); Aspartate aminotransferase (AST); and alanine transaminase (ALT) in the liver. TUNEL staining indicated stronger apoptotic signals in the high-temperature-stress group compared to the control group, suggesting that chronic high-temperature-induced oxidative stress, leading to liver tissue injury and apoptosis. Transcriptome analysis identified a total of 1330 DEGs, with 835 genes being upregulated and 495 genes being downregulated compared to the control group. These genes may be associated with oxidative stress, apoptosis, and immune response. The findings elucidate the growth changes in C. fuscus under chronic high temperature and provide insights into the underlying response mechanisms to a high-temperature environment.
Collapse
Affiliation(s)
- Yong Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhihua Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Kaizhi Jiao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Lei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cunyu Duan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| |
Collapse
|
12
|
Han P, Qiao Y, He J, Wang X. Stress responses to warming in Japanese flounder (Paralichthys olivaceus) from different environmental scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165341. [PMID: 37414161 DOI: 10.1016/j.scitotenv.2023.165341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of cold-water species widely farmed in Asia. In recent years, the increased frequency of extreme weather events caused by global warming has led to serious impact on Japanese flounder. Therefore, it is crucial to understand the effects of representative coastal economic fish under increasing water temperature. In this study, we investigated the histological and apoptosis responses, oxidative stress and transcriptomic profile in the liver of Japanese flounder exposed to gradual temperature rise (GTR) and abrupt temperature rise (ATR). The histological results showed liver cells in ATR group were the most serious in all three groups including vacuolar degeneration and inflammatory infiltration, and had more apoptosis cells than GTR group detected by TUNEL staining. These further indicated ATR stress caused more severe damage than GTR stress. Compared with control group, the biochemical analysis showed significantly changes in two kinds of heat stress, including GPT, GOT and D-Glc in serum, ATPase, Glycogen, TG, TC, ROS, SOD and CAT in liver. In addition, the RNA-Seq was used to analyze the response mechanism in Japanese flounder liver after heat stress. A total of 313 and 644 differentially expressed genes (DEGs) were identified in GTR and ATR groups, respectively. Further pathway enrichment of these DEGs revealed that heat stress affected cell cycle, protein processing and transportation, DNA replication and other biological processes. Notably, protein processing pathway in the endoplasmic reticulum (ER) was enriched significantly in KEGG and GSEA enrichment analysis, and the expression of ATF4 and JNK was significantly up-regulated in both GTR and ATR groups, while CHOP and TRAF2 were high expressed in GTR and ATR groups, respectively. In conclusion, heat stress could cause tissue damage, inflammation, oxidative stress and ER stress in the liver of Japanese flounder. The present study would provide insight into the reference for the adaptive mechanisms of economic fish in face of increasing water temperature caused by global warming.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Leal Y, Valenzuela-Muñoz V, Gallardo-Escárate C. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome survey. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109127. [PMID: 37813155 DOI: 10.1016/j.fsi.2023.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
14
|
Zhang X, Zhang X, Yuan J, Li F. The Responses of Alternative Splicing during Heat Stress in the Pacific White Shrimp Litopenaeus vannamei. Genes (Basel) 2023; 14:1473. [PMID: 37510377 PMCID: PMC10379218 DOI: 10.3390/genes14071473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heat tolerance is increasingly becoming a crucial trait for aquaculture species in the face of rapidly changing climate conditions. Alternative splicing (AS) is a vital mechanism within cells that modulates gene abundance and functional diversity, enabling organisms to effectively respond to diverse stressful conditions, including thermal stress. However, it is still uncertain whether AS contributes to heat tolerance in shrimp. In this study, we conducted an extensive transcriptome analysis on the Pacific white shrimp, Litopenaeus vannamei, revealing a total of 1267, 987, and 130 differential AS events (DAS) in the gill, hepatopancreas, and muscle, respectively, following exposure to heat stress. Among all of the DAS events, exon skipping (ES) was the predominant form of splicing modification observed. Interestingly, a minor portion of DAS genes exhibited overlap across the three tissues, implying that heat stress exerts unique effects on various tissue types. Moreover, the functional enrichment analysis demonstrated that commonly identified DAS genes were primarily associated with the "spliceosome" pathway, indicating that the AS of splicing-related genes played a crucial role in the response to heat stress. Our findings also revealed that heat stress tended to induce longer mRNA isoforms through differential alternative 3' splice site (A3SS) events. Notably, A3SS events exhibited the highest proportion of maintained open reading frames (ORFs) under heat stress. Interestingly, we observed a limited overlap between the genes exhibiting DAS and those showing differential gene expression (DEG), indicating that AS may function as a distinct regulatory mechanism independent of transcriptional regulation in response to heat stress. This is the first comprehensive study on AS in crustacea species under heat stress, which broadens our understanding of the regulatory mechanisms governing the crustaceans' response to environmental stress, providing valuable insights for the aquaculture breeding of shrimp and other aquatic animals.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
15
|
Zhang F, Dou J, Zhao X, Luo H, Ma L, Wang L, Wang Y. Identification of Key Genes Associated with Heat Stress in Rats by Weighted Gene Co-Expression Network Analysis. Animals (Basel) 2023; 13:ani13101618. [PMID: 37238049 DOI: 10.3390/ani13101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Heat stress has been a big challenge for animal survival and health due to global warming. However, the molecular processes driving heat stress response were unclear. In this study, we exposed the control group rats (n = 5) at 22 °C and the other three heat stress groups (five rats in each group) at 42 °C lasting 30, 60, and 120 min, separately. We performed RNA sequencing in the adrenal glands and liver and detected the levels of hormones related to heat stress in the adrenal gland, liver, and blood tissues. Weighted gene co-expression network analysis (WGCNA) was also performed. Results showed that rectal temperature and adrenal corticosterone levels were significantly negatively related to genes in the black module, which was significantly enriched in thermogenesis and RNA metabolism. The genes in the green-yellow module were strongly positively associated with rectal temperature and dopamine, norepinephrine, epinephrine, and corticosterone levels in the adrenal glands and were enriched in transcriptional regulatory activities under stress. Finally, 17 and 13 key genes in the black and green-yellow modules were identified, respectively, and shared common patterns of changes. Methyltransferase 3 (Mettl3), poly(ADP-ribose) polymerase 2 (Parp2), and zinc finger protein 36-like 1 (Zfp36l1) occupied pivotal positions in the protein-protein interaction network and were involved in a number of heat stress-related processes. Therefore, Parp2, Mettl3, and Zfp36l1 could be considered candidate genes for heat stress regulation. Our findings shed new light on the molecular processes underpinning heat stress.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinhuan Dou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiuxin Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hanpeng Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Longgang Ma
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Zhang T, Niu Z, He J, Pu P, Meng F, Xi L, Tang X, Ding L, Ma M, Chen Q. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Curr Issues Mol Biol 2023; 45:2937-2949. [PMID: 37185716 PMCID: PMC10136961 DOI: 10.3390/cimb45040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Fei Meng
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Department of Animal Science, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Transcriptome Analyses Reveal Essential Roles of Alternative Splicing Regulation in Heat-Stressed Holstein Cows. Int J Mol Sci 2022; 23:ijms231810664. [PMID: 36142577 PMCID: PMC9505234 DOI: 10.3390/ijms231810664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Heat stress (HS) severely impacts the productivity and welfare of dairy cows. Investigating the biological mechanisms underlying HS response is crucial for developing effective mitigation and breeding strategies. Therefore, we evaluated the changes in milk yield, physiological indicators, blood biochemical parameters, and alternative splicing (AS) patterns of lactating Holstein cows during thermoneutral (TN, N = 19) and heat-stress (HS, N = 17) conditions. There was a significant (p < 0.05) decline in milk yield as physiological indicators increased after exposure to natural HS conditions. The levels of eight out of 13 biochemical parameters of HS were also significantly altered in the presence of HS (p < 0.05). These results demonstrate that HS negatively influences various biological processes of Holstein cows. Furthermore, we investigated AS events based on the RNA-seq data from blood samples. With HS, five common types of AS events were generally increased by 6.7−38.9%. A total of 3470 AS events corresponding to 3143 unique genes were differentially alternatively spliced (DSGs) (p-adjusted < 0.05) between TN and HS groups. The functional annotation results show that the majority of DSGs are involved in mRNA splicing and spliceosomal complex, followed by enrichment in immune and metabolic processes. Eighty-seven out of 645 differentially expressed genes (DEGs) (fold change ≥ 1.5 and false discovery rate < 0.05) overlapped with DSGs. Further analyses showed that 20 of these genes were significantly enriched for the RNA splicing, RNA binding, and RNA transport. Among them, two genes (RBM25 and LUC7L3) had strong interrelation and co-expression pattern with other genes and were identified as candidate genes potentially associated with HS responses in dairy cows. In summary, AS plays a crucial role in changing the transcriptome diversity of heat-stress-related genes in multiple biological pathways and provides a different regulation mechanism from DEGs.
Collapse
|
18
|
Sukhovskaya IV, Kantserova NP, Lysenko LA, Morozov AA. Taxifolin Modulates Transcriptomic Response to Heat Stress in Rainbow Trout, Oncorhynchus mykiss. Animals (Basel) 2022; 12:ani12101321. [PMID: 35625167 PMCID: PMC9137817 DOI: 10.3390/ani12101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Taxifolin is a natural flavonoid known for its antioxidant, anti-inflammatory, and antiproliferative effects on animals. In this work, we have studied the effect of this compound on rainbow trout, Oncorhynchus mykiss, a major object of aquaculture, under slowly increasing ambient temperature and Gyrodactylus flatworm infection. Transcriptomic profiling of liver samples performed by using the Illumina HiSeq 2500 sequencing platform shows that a combined taxifolin/heat treatment, unlike heat treatment alone, downregulates the production of isopentenyl diphosphate, likely affecting the production of cholesterol and other sterols. Taxifolin treatment also modulates multiple apoptosis regulators and affects the expression of HSPs in response to increasing temperature. On the other hand, the expression of antioxidant enzymes in response to heat is not significantly affected by taxifolin. As for the Gyrodactylus infection, the parasite load is not affected by taxifolin treatment, although it was lower in the high-temperature group. Parasite load also did not induce a statistically significant transcriptomic response within the no heat/no taxifolin group.
Collapse
Affiliation(s)
- Irina V. Sukhovskaya
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
| | - Nadezhda P. Kantserova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
- Correspondence:
| | - Liudmila A. Lysenko
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
| | - Alexey A. Morozov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 3 Ulan-Batorskaya Street, 664033 Irkutsk, Russia;
| |
Collapse
|
19
|
Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020222. [PMID: 35205090 PMCID: PMC8869236 DOI: 10.3390/biology11020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. Abstract Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.
Collapse
|