1
|
Perillo M, Sepe RM, Paganos P, Toscano A, Annunziata R. Sea cucumbers: an emerging system in evo-devo. EvoDevo 2024; 15:3. [PMID: 38368336 PMCID: PMC10874539 DOI: 10.1186/s13227-023-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/24/2023] [Indexed: 02/19/2024] Open
Abstract
A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
Collapse
Affiliation(s)
- Margherita Perillo
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Rosa Maria Sepe
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
2
|
Liu X, Wang Y, Han L, Xia Y, Xie J. A virus induces alterations in root morphology while exerting minimal effects on the rhizosphere and endosphere microorganisms in rice. FEMS Microbiol Ecol 2023; 99:fiad113. [PMID: 37742208 DOI: 10.1093/femsec/fiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The highly destructive southern rice black-streaked dwarf virus (SRBSDV) causes significant losses in rice production. To understand its impact on rice root, we studied fibrous root development and root microbiota variation (rhizosphere and endosphere) after SRBSDV infection. SRBSDV infection reduced the number and length of fibrous roots in rice. Interestingly, the rhizosphere had higher bacterial diversity and abundance at the initial (0 days) and 30-day postinfection stages, while 30-day-old roots showed increased diversity and abundance. However, there were no significant differences in microbiota diversity between infected and noninfected rice plants. The major rhizosphere microbiota included Proteobacteria, Bacteroidota, Acidobacteriota, and Planctomycetota, comprising about 80% of the community. The endosphere was dominated by Proteobacteria and Cyanobacteria, constituting over 90%, with Bacteroidota as the next most prominent group. Further, we identified differentially expressed genes related to plant-pathogen interactions, plant hormone signal, and ABC transporters, potentially affecting root morphology. Notably, specific bacteria (e.g. Inquilinus and Actinoplanes) showed correlations with these pathways. In conclusion, SRBSDV primarily influences root growth through host metabolism, rather than exerting direct effects on the root microbiota. These insights into the interactions among the pathogen, rice plant, and associated microbiota could have implications for managing SRBSDV's detrimental effects on rice production.
Collapse
Affiliation(s)
- Xuewei Liu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yirong Wang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Lijuan Han
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| |
Collapse
|
3
|
Xie J, Sun Y, Li Y, Zhang X, Hao P, Han L, Cao Y, Ding B, Chang Y, Yin D, Ding J. TMT-based proteomics analysis of growth advantage of triploid Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101043. [PMID: 36493631 DOI: 10.1016/j.cbd.2022.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Polyploid breeding can produce new species with a faster growth rate, higher disease resistance, and higher survival rate, and has achieved significant economic benefits. This study investigated the protein differences in the body wall of triploid Apostichopus japonicus and diploid A. japonicus using isotope-labeled relative and absolute quantitative Tandem Mass Tag technology. A total of 21,096 independent peptides and 4621 proteins were identified. Among them, there were 723 proteins with significant expression differences, including 413 up-regulated proteins and 310 down-regulated proteins. The differentially expressed proteins (DEPs) were enriched in 4519 Gene Ontology enrichment pathways and 320 Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Twenty-two key DEPs related to important functions such as growth and immunity of triploid A. japonicus were screened from the results, among which 20 were up-regulated, such as cathepsin L2 cysteine protease and fibrinogen-like protein A. Arylsulfatase A and zonadhesin were down-regulated. The up-regulated proteins were mainly involved in oxidative stress response, innate immune response, and collagen synthesis in triploid A. japonicus, and the down-regulated proteins were mainly associated with the sterility of triploid A. japonicus. In addition, the transcriptome and proteome were analyzed jointly to support proteome data. In this study, the differences in protein composition between triploid and diploid A. japonicus were analyzed for the first time, and the results revealed the underlying reasons for the growth advantage of triploid A. japonicus.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
4
|
Zhang X, Wang T, Zhai D, Liu H, Xiong F, Wang Y. Transcriptome analysis and gene expression analysis related to salinity-alkalinity and low temperature adaptation of Triplophysa yarkandensis. Front Genet 2023; 13:1089274. [PMID: 36712878 PMCID: PMC9877283 DOI: 10.3389/fgene.2022.1089274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
T. yarkandensis is a common species of Triplophysa, and it is distributed in Shule river of Hexi Corridor, of Gansu province in China. In order to enrich gene database resources and explore the environment adaptation of T. yarkandensis, fifteen tissues were collected from three adult T. yarkandensis for transcriptome sequencing and de novo assembly. Nine major international gene annotation databases (NR, COG, egg_NOG, TrEMBL, Pfam, KOG, Swiss prot, KEGG and Gene Ontology) were utilized to annotate unigenes. A detailed study was conducted to explore the gene expression and the differentially expressed genes among five tissues (brain, heart, kidney, liver and spleen). In addition, the current study showed that candidate genes involved in salinity-alkalinity and low temperature adaptation were differentially expressed in tissues of T. yarkandensis. Precisely, mapk1, abcc1, gpx1, gpx4, cat and aqp1 genes participated in the regulation process of salinity-alkalinity adaptation, and elovl4, acaca, fasn, acaa2, acox1 and acox3 genes were involved in fatty acid metabolism and closely associated with low temperature adaptation. On the one hand, it was found that the expression of these genes varied among different tissues, and the important pathways involved in these genes were mapped. Furthermore, we analyzed mapk1 and acox1 genes in depth to obtain the predicted gene structure and important amino acid sites. The transcriptome information in this study will be conducive to provide further understanding for the molecular level research and exploration of the environmental adaptation of T. yarkandensis.
Collapse
Affiliation(s)
- Xuejing Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, China
| | - Tai Wang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishers Research Institute, Lanzhou, China
| | - Dongdong Zhai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, China,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Hongyan Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, China,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, China,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China,*Correspondence: Fei Xiong, ; Ying Wang,
| | - Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, China,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China,*Correspondence: Fei Xiong, ; Ying Wang,
| |
Collapse
|
5
|
Ma B, Liu Y, Pan W, Li Z, Ren C, Hu C, Luo P. Integrative Application of Transcriptomics and Metabolomics Provides Insights into Unsynchronized Growth in Sea Cucumber ( Stichopus monotuberculatus). Int J Mol Sci 2022; 23:15478. [PMID: 36555118 PMCID: PMC9779819 DOI: 10.3390/ijms232415478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Ever-increasing consumer demand for sea cucumbers mainly leads to huge damage to wild sea cucumber resources, including Stichopus monotuberculatus, which in turn exerts negative impacts on marine environments due to the lack of ecological functions performed by sea cucumbers. Aquaculture of sea cucumbers is an effective way to meet consumer demand and restore their resources. Unsynchronous growth is a prominent problem in the aquaculture of sea cucumbers which has concealed unelucidated molecular mechanisms until now. In this study, we carried out an integrative analysis of transcriptomics and metabolomics on fast-growing (SMF) and slow-growing (SMS) groups of S. monotuberculatus cultured in the same environmental conditions. The results revealed that a total of 2054 significantly differentially expressed genes (DEGs) were identified, which are mainly involved in fat digestion and absorption, histidine metabolism, arachidonic acid metabolism, and glutathione metabolism. 368 differential metabolites (DMs) were screened out between the SMF group and the SMS group; these metabolites are mainly involved in glycerophospholipid metabolism, purine metabolism, biosynthesis of unsaturated fatty acids, pyrimidine metabolism, arachidonic acid metabolism, and other metabolic pathways. The integrative analysis of transcriptomics and metabolomics of S. monotuberculatus suggested that the SMF group had a higher capacity for lipid metabolism and protein synthesis, and had a more frequent occurrence of apoptosis events, which are likely to be related to coping with environmental stresses. The results of this study provide potential values for the aquaculture of sea cucumbers which may promote their resource enhancement.
Collapse
Affiliation(s)
- Bo Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Yang Liu
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Wenjie Pan
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Zhuobo Li
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| |
Collapse
|
6
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|