1
|
Videau P, Shlafstein MD, Oline DK, Givan SA, Chapman LF, Strangman WK, Hahnke RL, Saw JH, Ushijima B. Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms. Environ Microbiol 2024; 26:e16672. [PMID: 39040020 DOI: 10.1111/1462-2920.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Scott A Givan
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Linda Fleet Chapman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Richard L Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
2
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Aslam M, Pei P, Ye P, Li T, Liang H, Zhang Z, Ke X, Chen W, Du H. Unraveling the Diverse Profile of N-Acyl Homoserine Lactone Signals and Their Role in the Regulation of Biofilm Formation in Porphyra haitanensis-Associated Pseudoalteromonas galatheae. Microorganisms 2023; 11:2228. [PMID: 37764072 PMCID: PMC10537045 DOI: 10.3390/microorganisms11092228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P. haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings offer valuable insights for future investigations exploring the role of AHL producing epiphytes and biofilms in the life cycle of P. haitanensis.
Collapse
Affiliation(s)
- Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Zezhi Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- STU-UNIVPM Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|