1
|
Alimin AWF, Yusoff NAH, Kadriah IAK, Anshary H, Abdullah F, Jabir N, Susianingsih E, Hassan M. Parasitic dinoflagellate Hematodinium in marine decapod crustaceans: a review on current knowledge and future perspectives. Parasitol Res 2023; 123:49. [PMID: 38095702 DOI: 10.1007/s00436-023-08067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023]
Abstract
Parasitic dinoflagellates of the genus Hematodinium are known to infect various marine crustaceans worldwide, especially crabs and several species of shrimp and lobster. Some of these species are new host species and components of commercial fishery products. These parasitic species are predominantly found in the hemolymph of the host and cause pathological changes and functional damage to organs and tissues, leading to death. In recent years, these parasites have infected important commercially valuable species, particularly in European waters, US waters, Australian waters, and recently in Shandong Peninsula in China. These Hematodinium pathogens were also reported to affect wild shrimp in Chinese waters and in the English North Sea. These rapid spreads affect crustacean aquaculture industries, where they are indeed a significant threat to the sustainability of the aquaculture of important crustaceans. The fishery products industries are also under pressure from the invasion of this pathogen, as the crab meat produced has a bitter taste, which may reduce its marketability. In response to these threats, this review was aimed at providing a broader understanding of the development of parasite distribution and ecological aspects of Hematodinium. In addition, the interaction of these pathogens with their hosts, the environmental drivers of Hematodinium disease, and future research perspectives were discussed.
Collapse
Grants
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 63933 and 56053 Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE) program, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
- Vot 55318 International Partnership Research Grant, University Malaysia Terengganu (IPRG)
Collapse
Affiliation(s)
- Ade Wahyul Fajri Alimin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300, Kuala Terengganu, Terengganu, Malaysia
- Research Centre of Fisheries, National Research and Innovation Agency, Jl. Raya Bogor KM. 46, Kab. Bogor, East Java, Indonesia
| | - Nor Asma Husna Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300, Kuala Terengganu, Terengganu, Malaysia
| | - Ince Ayu Khairana Kadriah
- Research Centre of Fisheries, National Research and Innovation Agency, Jl. Raya Bogor KM. 46, Kab. Bogor, East Java, Indonesia
| | - Hilal Anshary
- Laboratory of Fish Parasites and Diseases, Department of Fisheries, Faculty of Marine Science and Fisheries, Hasanuddin University, 90245, Makassar, Indonesia
| | - Farizan Abdullah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300, Kuala Terengganu, Terengganu, Malaysia
| | - Nurhidayah Jabir
- Research Centre of Fisheries, National Research and Innovation Agency, Jl. Raya Bogor KM. 46, Kab. Bogor, East Java, Indonesia
| | - Endang Susianingsih
- Research Centre of Fisheries, National Research and Innovation Agency, Jl. Raya Bogor KM. 46, Kab. Bogor, East Java, Indonesia
| | - Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
2
|
Coates CJ, Kraev I, Rowley AF, Lange S. Extracellular vesicle signatures and protein citrullination are modified in shore crabs ( Carcinus maenas) infected with Hematodinium sp. Virulence 2023; 14:2180932. [PMID: 36813781 PMCID: PMC9988307 DOI: 10.1080/21505594.2023.2180932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Epizootiologists recurrently encounter symbionts and pathobionts in the haemolymph (blood equivalent) of shellfish. One such group is the dinoflagellate genus Hematodinium, which contains several species that cause debilitating disease in decapod crustaceans. The shore crab Carcinus maenas acts as a mobile reservoir of microparasites, including Hematodinium sp., thereby posing a risk to other co-located commercially important species, e.g. velvet crabs (Necora puber). Despite the widespread prevalence and documented seasonality of Hematodinium infection dynamics, there is a knowledge gap regarding host-pathogen antibiosis, namely, how Hematodinium avoids the host's immune defences. Herein, we interrogated the haemolymph of Hematodinium-positive and Hematodinium-negative crabs for extracellular vesicle (EV) profiles (a proxy for cellular communication), alongside proteomic signatures for post-translational citrullination/deimination performed by arginine deiminases, which can infer a pathologic state. Circulating EV numbers in parasitized crab haemolymph were reduced significantly, accompanied by smaller EV modal size profiles (albeit non-significantly) when compared to Hematodinium-negative controls. Differences were observed for citrullinated/deiminated target proteins in the haemolymph between the parasitized and control crabs, with fewer hits identified overall in the former. Three deiminated proteins specific to parasitized crab haemolymph were actin, Down syndrome cell adhesion molecule (DSCAM), and nitric oxide synthase - factors that contribute to innate immunity. We report, for the first time, Hematodinium sp. could interfere with EV biogenesis, and that protein deimination is a putative mechanism of immune-modulation in crustacean-Hematodinium interactions.
Collapse
Affiliation(s)
- Christopher J. Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Andrew F. Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| |
Collapse
|
3
|
Zhao S, Hu Q, Jiang H, Zhao Y, Wang Y, Feng C, Li X. Multi-omics analysis of oxidative stress and apoptosis in hepatopancreas cells induced by Polyascus gregaria parasitizing the Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109180. [PMID: 37863124 DOI: 10.1016/j.fsi.2023.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Polyascus gregaria, a parasitic barnacle, poses a significant threat to Eriocheir sinensis farms by inhibiting crab growth. However, the molecular and pathological mechanisms behind P. gregaria infection in the hepatopancreas of E. sinensis remain unclear. In this study, we investigated the impact and underlying mechanisms of P. gregaria infection on E. sinensis through analyzing the infected hepatopancreatic tissues by tandem mass tag technology and RNA-Seq high-throughput sequencing. Among the identified 10,693 differentially expressed genes, 294 genes were significantly altered following P. gregaria infection, including 92 upregulated and 202 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further revealed the involvement of these genes in oxidative decomposition, lipid metabolism, inflammation, and hepatopancreas metabolism. Meanwhile, the identified 253 differentially expressed proteins, including 143 upregulated and 110 downregulated proteins, are mainly related to cellular and metabolic processes, catalytic activity, and cell components. The pathway analysis indicated their enrichment in glycolysis/gluconeogenesis, oxidative phosphorylation, endoplasmic reticulum protein processing, and actin cytoskeleton regulation. The involvement of these differentially expressed genes and proteins in the peroxisome proliferator-activated receptors pathway during host immune responses against P. gregaria infection has been highlighted. Furthermore, pathological examinations and biochemical indicators jointly demonstrated the hepatopancreatic damage and increased oxidative stress and apoptosis in the infected E. sinensis. Collectively, our study provides crucial insights into the mechanisms underlying the E. sinensis-P. gregaria interactions, and may contribute to the development of novel strategies for parasite control and reducing economic losses in aquaculture.
Collapse
Affiliation(s)
- Shiwei Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingbiao Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongbo Jiang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanping Wang
- Linong Testing (Binzhou) Co., Ltd., Binzhou Bohai Advanced Technology Research Institute, Binzhou, 256600, China
| | - Chengcheng Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|