1
|
Peng L, Zhu A, Ahmad W, Adade SYSS, Chen Q, Wei W, Chen X, Wei J, Jiao T, Chen Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe 3O 4@Cu for on-site detection of tetrodotoxin in fish. Food Chem 2024; 460:140566. [PMID: 39067423 DOI: 10.1016/j.foodchem.2024.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Tetrodotoxin (TTX), a lethal neurotoxin, poses a grave threat to human health. The available spectroscopic methods suffer from limitations such as complex procedures and inadequate on-site capabilities. In this study, we proposed a method using Fe3O4@Cu as a catalytic biosensor combined with SERS, colorimetry and image processing for TTX detection. Integrating the aptamer amplifies the specificity of the system and masks the catalytic activity of Fe3O4@Cu. The catalytic efficiency of Fe3O4@Cu in the H2O2-TMB reaction can quantify the concentration of TTX in the system. Consequently, oxidation of TMB (oxTMB) led to the generation and change of signals for SERS, colorimetry and image processing, enabling a three-channel quantitative detection of TTX. Under the optimal conditions, the detection limit of established SERS, colorimetry and image processing were 0.055, 2.127 and 0.243 ng/mL, respectively. This three-channel biosensor was applied to real samples, providing an accurate, stable and adaptable alternative for on-site TTX detection.
Collapse
Affiliation(s)
- Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | | | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
2
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
3
|
Shingai T, Chiba Y, Kondo M, Yotsu-Yamashita M. Temporal variation in the concentrations and profiles of paralytic shellfish toxins and tetrodotoxin in scallop (Mizuhopecten yessoensis) and bloody clam (Anadara broughtonii) collected from the coast of Miyagi Prefecture, Japan. Toxicon 2024; 243:107710. [PMID: 38579982 DOI: 10.1016/j.toxicon.2024.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
For food safety, the concentrations and profiles of paralytic shellfish toxins (PSTs) and tetrodotoxin were examined in economically important scallops and bloody clams collected from the coast of the Miyagi Prefecture, Japan. PSTs were the major toxins in both species. The tetrodotoxin concentration in scallops increased in summer, although the highest value (18.7 μg/kg) was lower than the European Food Safety Authority guideline threshold (44 μg/kg). This confirmed the safety for tetrodotoxin in this area.
Collapse
Affiliation(s)
- Tatsunari Shingai
- Miyagi Prefectural Institute of Public Health and Environment Center, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi, 983-0836, Japan.
| | - Yoshiko Chiba
- Miyagi Prefectural Institute of Public Health and Environment Center, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi, 983-0836, Japan
| | - Mitsue Kondo
- Miyagi Prefectural Institute of Public Health and Environment Center, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi, 983-0836, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
4
|
Ito M, Shirai K, Oyama H, Yasukawa S, Asano M, Kihara M, Suo R, Sugita H, Nakahigashi R, Adachi M, Nishikawa T, Itoi S. Geographical differences in the composition of tetrodotoxin and 5,6,11-trideoxytetrodotoxin in Japanese pufferfishes and their origins. CHEMOSPHERE 2023; 336:139214. [PMID: 37327821 DOI: 10.1016/j.chemosphere.2023.139214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Tetrodotoxin (TTX)-bearing fish are thought to accumulate TTXs in their bodies through a food chain that begins with marine bacteria. However, the mechanism of TTXs transfer between prey and predators in the food chain remains unclear and the reasons for regional differences in pufferfish toxicity are also unknown. To investigate these matters, we collected juveniles of four species of pufferfish, Takifugu alboplumbeus, Takifugu flavipterus, Takifugu stictonotus, and Chelonodon patoca, from various locations in the Japanese Islands, and subjected them to liquid chromatography-tandem mass spectrometry analysis for TTX and its analog 5,6,11-trideoxyTTX (TDT). Concentrations of these substances tended to be higher in pufferfish juveniles collected from the Sanriku coastal area (Pacific coast of northern Japan) than in those from other locations. Juveniles had higher concentrations of TTX at all locations than of TDT. Mitochondrial cytochrome c oxidase subunit I (COI) sequences specific to the TTX-bearing flatworm, Planocera multitentaculata, were detected in the intestinal contents of up to 100% of pufferfish juveniles from various sampling sites, suggesting that P. multitentaculata was widely involved in the toxification of the juveniles in the coastal waters of Japan. A toxification experiment was conducted on three species of pufferfish juveniles (T. alboplumbeus, Takifugu rubripes and C. patoca) using TTX-bearing flatworm eggs harboring equal amounts of TTX and TDT. The TTX content of juveniles fed on flatworm eggs was found to be more than twice that of TDT, suggesting that pufferfish preferentially incorporate TTX compared to TDT.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaki Asano
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masato Kihara
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8587, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|