1
|
Mikołajczak K, Kuczyńska A, Ogrodowicz P, Kiełbowicz-Matuk A, Ćwiek-Kupczyńska H, Daszkowska-Golec A, Szarejko I, Surma M, Krajewski P. High-throughput sequencing data revealed genotype-specific changes evoked by heat stress in crown tissue of barley sdw1 near-isogenic lines. BMC Genomics 2022; 23:177. [PMID: 35246029 PMCID: PMC8897901 DOI: 10.1186/s12864-022-08410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High temperature shock is becoming increasingly common in our climate, affecting plant growth and productivity. The ability of a plant to survive stress is a complex phenomenon. One of the essential tissues for plant performance under various environmental stimuli is the crown. However, the molecular characterization of this region remains poorly investigated. Gibberellins play a fundamental role in whole-plant stature formation. This study identified plant stature modifications and crown-specific transcriptome re-modeling in gibberellin-deficient barley sdw1.a (BW827) and sdw1.d (BW828) mutants exposed to increased temperature. RESULTS The deletion around the sdw1 gene in BW827 was found to encompass at least 13 genes with primarily regulatory functions. A bigger genetic polymorphism of BW828 than of BW827 in relation to wild type was revealed. Transcriptome-wide sequencing (RNA-seq) revealed several differentially expressed genes involved in gibberellin metabolism and heat response located outside of introgression regions. It was found that HvGA20ox4, a paralogue of the HvGA20ox2 gene, was upregulated in BW828 relative to other genotypes, which manifested as basal internode elongation. The transcriptome response to elevated temperature differed in the crown of sdw1.a and sdw1.d mutants; it was most contrasting for HvHsf genes upregulated under elevated temperature in BW828, whereas those specific to BW827 were downregulated. In-depth examination of sdw1 mutants revealed also some differences in their phenotypes and physiology. CONCLUSIONS We concluded that despite the studied sdw1 mutants being genetically related, their heat response seemed to be genotype-specific and observed differences resulted from genetic background diversity rather than single gene mutation, multiple gene deletion, or allele-specific expression of the HvGA20ox2 gene. Differences in the expressional reaction of genes to heat in different sdw1 mutants, found to be independent of the polymorphism, could be further explained by in-depth studies of the regulatory factors acting in the studied system. Our findings are particularly important in genetic research area since molecular response of crown tissue has been marginally investigated, and can be useful for wide genetic research of crops since barley has become a model plant for them.
Collapse
Affiliation(s)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.
| |
Collapse
|
2
|
Jaikumar NS, Dorn KM, Baas D, Wilke B, Kapp C, Snapp SS. Nucleic acid damage and DNA repair are affected by freezing stress in annual wheat (Triticum aestivum) and by plant age and freezing in its perennial relative (Thinopyrum intermedium). AMERICAN JOURNAL OF BOTANY 2020; 107:1693-1709. [PMID: 33340368 DOI: 10.1002/ajb2.1584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Nucleic acid integrity can be compromised under many abiotic stresses. To date, however, few studies have considered whether nucleic acid damage and damage repair play a role in cold-stress adaptation. A further insufficiently explored question concerns how age affects cold stress adaptation among mature perennials. As a plant ages, the optimal trade-off between growth and stress tolerance may shift. METHODS Oxidative damage to RNA and expression of genes involved in DNA repair were compared in multiple mature cohorts of Thinopyrum intermedium (an emerging perennial cereal) and in wheat and barley under intermittent freezing stress and under nonfreezing conditions. Activity of glutathione peroxidase (GPX) and four other antioxidative enzymes was also measured under these conditions. DNA repair genes included photolyases involved in repairing ultraviolet-induced damage and two genes involved in repairing oxidatively induced damage (ERCC1, RAD23). RESULTS Freezing stress was accompanied by large increases in photolyase expression and ERCC1 expression (in wheat and Thinopyrum) and in GPX and GR activity (particularly in Thinopyrum). This is the first report of DNA photolyases being overexpressed under freezing stress. Older Thinopyrum had lower photolyase expression and less freezing-induced overexpression of ERCC1. Younger Thinopyrum plants sustained more oxidative damage to RNA. CONCLUSIONS Overexpression of DNA repair genes is an important aspect of cold acclimation. When comparing adult cohorts, aging was associated with changes in the freezing stress response, but not with overall increases or decreases in stress tolerance.
Collapse
Affiliation(s)
- Nikhil S Jaikumar
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Kevin M Dorn
- United States Department of Agriculture, Agricultural Research Service, Soil Management and Sugarbeet Research Unit, 1701 Centre Ave, Fort Collins, CO, 80526, USA
| | - Dean Baas
- Michigan State University Extension, 612 E. Main Street, Centreville, MI, 49032, USA
| | - Brook Wilke
- Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI, 49060, USA
| | - Christian Kapp
- Upper Peninsula Research and Extension Center, Michigan State University, E3774 University Drive, Chatham, MI, 49816, USA
| | - Sieglinde S Snapp
- Department of Plant, Soil and Microbial Science, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824, USA
- Center for Global Change and Earth Observations, Michigan State University, 1405 S Harrison Rd., East Lansing, MI, 48823, USA
| |
Collapse
|
3
|
Skinner DZ, Bellinger B, Hiscox W, Helms GL. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants. PLoS One 2018; 13:e0198042. [PMID: 29912979 PMCID: PMC6005534 DOI: 10.1371/journal.pone.0198042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of winter wheat (Triticum aestivum L.) plants to develop freezing tolerance through cold acclimation is a complex rait that responds to many environmental cues including day length and temperature. A large part of the freezing tolerance is conditioned by the C-repeat binding factor (CBF) gene regulon. We investigated whether the level of freezing tolerance of 12 winter wheat lines varied throughout the day and night in plants grown under a constant low temperature and a 12-hour photoperiod. Freezing tolerance was significantly greater (P<0.0001) when exposure to subfreezing temperatures began at the midpoint of the light period, or the midpoint of the dark period, compared to the end of either period, with an average of 21.3% improvement in survival. Thus, freezing survival was related to the photoperiod, but cycled from low, to high, to low within each 12-hour light period and within each 12-hour dark period, indicating ultradian cyclic variation of freezing tolerance. Quantitative real-time PCR analysis of expression levels of CBF genes 14 and 15 indicated that expression of these two genes also varied cyclically, but essentially 180° out of phase with each other. Proton nuclear magnetic resonance analysis (1H-NMR) showed that the chemical composition of the wheat plants' cellular fluid varied diurnally, with consistent separation of the light and dark phases of growth. A compound identified as glutamine was consistently found in greater concentration in a strongly freezing-tolerant wheat line, compared to moderately and poorly freezing-tolerant lines. The glutamine also varied in ultradian fashion in the freezing-tolerant wheat line, consistent with the ultradian variation in freezing tolerance, but did not vary in the less-tolerant lines. These results suggest at least two distinct signaling pathways, one conditioning freezing tolerance in the light, and one conditioning freezing tolerance in the dark; both are at least partially under the control of the CBF regulon.
Collapse
Affiliation(s)
- Daniel Z. Skinner
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
- * E-mail:
| | - Brian Bellinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
| | - William Hiscox
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Kruse EB, Carle SW, Wen N, Skinner DZ, Murray TD, Garland-Campbell KA, Carter AH. Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat. G3 (BETHESDA, MD.) 2017; 7:775-780. [PMID: 28143950 PMCID: PMC5345707 DOI: 10.1534/g3.116.037622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022]
Abstract
Plants grown through the winter are subject to selective pressures that vary with each year's unique conditions, necessitating tolerance of numerous abiotic and biotic stress factors. The objective of this study was to identify molecular markers in winter wheat (Triticum aestivum L.) associated with tolerance of two of these stresses, freezing temperatures and snow mold-a fungal disease complex active under snow cover. A population of 155 F2:5 recombinant inbred lines from a cross between soft white wheat cultivars "Finch" and "Eltan" was evaluated for snow mold tolerance in the field, and for freezing tolerance under controlled conditions. A total of 663 molecular markers was used to construct a genetic linkage map and identify marker-trait associations. One quantitative trait locus (QTL) associated with both freezing and snow mold tolerance was identified on chromosome 5A. A second, distinct, QTL associated with freezing tolerance also was found on 5A, and a third on 4B. A second QTL associated with snow mold tolerance was identified on chromosome 6B. The QTL on 5A associated with both traits was closely linked with the Fr-A2 (Frost-Resistance A2) locus; its significant association with both traits may have resulted from pleiotropic effects, or from greater low temperature tolerance enabling the plants to better defend against snow mold pathogens. The QTL on 4B associated with freezing tolerance, and the QTL on 6B associated with snow mold tolerance have not been reported previously, and may be useful in the identification of sources of tolerance for these traits.
Collapse
Affiliation(s)
- Erika B Kruse
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Scott W Carle
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Daniel Z Skinner
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
- United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research, Washington State University, Pullman, Washington 99164
| | - Timothy D Murray
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Kimberly A Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
- United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research, Washington State University, Pullman, Washington 99164
| | - Arron H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
5
|
Kovi MR, Ergon Å, Rognli OA. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:140-146. [PMID: 27479037 DOI: 10.1016/j.pbi.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance. Cold temperatures induce changes at several organizational levels in the plant (cold acclimation), leading to the development of freezing tolerance, which can be reduced/lost during warm spells (deacclimation) in winters, and attained again during cold spells (reacclimation). We summarize how temperature interacts with components of the light regime (photoperiod, PSII excitation pressure, irradiance, and light quality) in determining changes in the transcriptome, proteome and metabolome.
Collapse
Affiliation(s)
- Mallikarjuna Rao Kovi
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
6
|
Zhang N, Huo W, Zhang L, Chen F, Cui D. Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Mol Cell Proteomics 2016; 15:2954-69. [PMID: 27402868 DOI: 10.1074/mcp.m115.057232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Proteomic approaches were applied to identify protein spots involved in cold responses in wheat. By comparing the differentially accumulated proteins from two cultivars (UC1110 and PI 610750) and their derivatives, as well as the F10 recombinant inbred line population differing in cold-tolerance, a total of 20 common protein spots representing 16 unique proteins were successfully identified using 2-DE method. Of these, 14 spots had significantly enhanced abundance in the cold-sensitive parental cultivar UC1110 and its 20 descendant lines when compared with the cold-tolerant parental cultivar PI 610750 and its 20 descendant lines. Six protein spots with reduced abundance were also detected. The identified protein spots are involved in stress/defense, carbohydrate metabolism, protein metabolism, nitrogen metabolism, energy metabolism, and photosynthesis. The 20 differentially expressed protein spots were chosen for quantitative real-time polymerase chain reaction (qRT-PCR) to investigate expression changes at the RNA level. The results indicated that the transcriptional expression patterns of 11 genes were consistent with their protein expression models. Among the three unknown proteins, Spot 20 (PAP6-like) showed high sequence similarities with PAP6. qRT-PCR results implied that cold and salt stresses increased the expression of PAP6-like in wheat leaves. Furthermore, VIGS (virus-induced gene silencing)-treated plants generated for PAP6-like were subjected to freezing stress, these plants had more serious droop and wilt, an increased rate of relative electrolyte leakage, reduced relative water content (RWC) and decreased tocopherol levels when compared with viral control plants. However, the plants that were silenced for the other two unknown proteins had no significant differences in comparison to the BSMV0-inoculated plants under freezing conditions. These results indicate that PAP6-like possibly plays an important role in conferring cold tolerance in wheat.
Collapse
Affiliation(s)
- Ning Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Wang Huo
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Skinner DZ. Genes Upregulated in Winter Wheat (Triticum aestivum L.) during Mild Freezing and Subsequent Thawing Suggest Sequential Activation of Multiple Response Mechanisms. PLoS One 2015; 10:e0133166. [PMID: 26173115 PMCID: PMC4501828 DOI: 10.1371/journal.pone.0133166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/23/2015] [Indexed: 01/10/2023] Open
Abstract
Exposing fully cold-acclimated wheat plants to a mild freeze-thaw cycle of -3 °C for 24h followed by +3 °C for 24 or 48 h results in dramatically improved tolerance of subsequent exposure to sub-freezing temperatures. Gene enrichment analysis of crown tissue from plants collected before or after the -3 °C freeze or after thawing at +3 °C for 24 or 48 h revealed that many biological processes and molecular functions were activated during the freeze-thaw cycle in an increasing cascade of responses such that over 150 processes or functions were significantly enhanced by the end of the 48 h, post-freeze thaw. Nearly 2,000 individual genes were upregulated more than 2-fold over the 72 h course of freezing and thawing, but more than 70% of these genes were upregulated during only one of the time periods examined, suggesting a series of genes and gene functions were involved in activation of the processes that led to enhanced freezing tolerance. This series of functions appeared to include extensive cell signaling, activation of stress response mechanisms and the phenylpropanoid biosynthetic pathway, extensive modification of secondary metabolites, and physical restructuring of cell membranes. By identifying plant lines that are especially able to activate these multiple mechanisms it may be possible to develop lines with enhanced winterhardiness.
Collapse
Affiliation(s)
- Daniel Z. Skinner
- USDA-ARS and Washington State University, Department of Crop and Soil Sciences, 209 Johnson Hall, Pullman, WA, 99164, United States of America
| |
Collapse
|
8
|
Yokota H, Iehisa JCM, Shimosaka E, Takumi S. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:78-88. [PMID: 25577733 DOI: 10.1016/j.jplph.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 05/18/2023]
Abstract
In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway.
Collapse
Affiliation(s)
- Hirokazu Yokota
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Julio C M Iehisa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Etsuo Shimosaka
- Hokkaido Agricultural Research Center of the National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira, Sapporo, Hokkaido 062-8555, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
9
|
Le MQ, Pagter M, Hincha DK. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. PLANT MOLECULAR BIOLOGY 2015; 87:1-15. [PMID: 25311197 DOI: 10.1007/s11103-014-0256-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
Collapse
Affiliation(s)
- Mai Q Le
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | | |
Collapse
|
10
|
Janská A, Aprile A, Cattivelli L, Zámečník J, de Bellis L, Ovesná J. The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance. Funct Integr Genomics 2014; 14:493-506. [PMID: 24838952 DOI: 10.1007/s10142-014-0377-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
We report a series of microarray-based leaf and crown transcriptome comparisons involving three barley cultivars (cvs. Luxor, Igri and Atlas 68) which express differing degrees of frost tolerance. The transcripts were obtained following the exposure of seedlings to low (above and below zero) temperatures, aiming to identify those genes and signalling/metabolic pathways which are associated with frost tolerance. Both the leaves and the crowns responded to low temperature by the up-regulation of a suite of abscisic acid (ABA)-responsive genes, most of which have already been recognized as components of the plant low temperature response. The inter-cultivar comparison indicated that genes involved in maintaining the leaf's capacity to synthesize protein and to retain chloroplast activity were important for the expression of frost tolerance. In the crown, the repression of genes associated with nucleosome assembly and transposon regulation were the most relevant transcriptional changes associated with frost tolerance, highlighting the role of gene repression in the cold acclimation response.
Collapse
Affiliation(s)
- Anna Janská
- Department of Molecular Biology, Crop Research Institute, v.v.i., Drnovská 507, 161 06, Prague 6, Czech Republic,
| | | | | | | | | | | |
Collapse
|
11
|
Hlaváčková I, Vítámvás P, Šantrůček J, Kosová K, Zelenková S, Prášil IT, Ovesná J, Hynek R, Kodíček M. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 2013; 14:8000-24. [PMID: 23584021 PMCID: PMC3645728 DOI: 10.3390/ijms14048000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600–700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and “enhanced disease susceptibility 1” in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.
Collapse
Affiliation(s)
- Iva Hlaváčková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-220-444-384; Fax: +420-220-445-167
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Jiří Šantrůček
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| | - Klára Kosová
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Sylva Zelenková
- Department of Plant Experimental Biology, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic; E-Mail:
| | - Ilja Tom Prášil
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Jaroslava Ovesná
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; E-Mails: (P.V.); (K.K.); (I.T.P.); (J.O.)
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| | - Milan Kodíček
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; E-Mails: (J.Š.); (R.H.); (M.K.)
| |
Collapse
|
12
|
Motomura Y, Kobayashi F, Iehisa JCM, Takumi S. A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene Fr-A2 in common wheat. BREEDING SCIENCE 2013; 63:58-67. [PMID: 23641182 PMCID: PMC3621446 DOI: 10.1270/jsbbs.63.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/27/2012] [Indexed: 05/18/2023]
Abstract
Low temperature induces expression of Cor (cold-responsive)/Lea (late embryogenesis-abundant) gene family members through C-repeat binding factor (CBF) transcription factors in common wheat. However, the relationship between the genetic loci controlling cold-responsive gene expression and freezing tolerance is unclear. In expression quantitative trait locus (eQTL) analysis, accumulated transcripts of Cor/Lea and CBF genes were quantified in recombinant inbred lines derived from a cross between two common wheat cultivars with different levels of freezing tolerance. Four eQTLs controlling five cold-responsive genes were found, and the major eQTL with the greatest effect was located on the long arm of chromosome 5A. At least the 1D and 5A eQTLs played important roles in development of freezing tolerance in common wheat. The chromosomal location of the 5A eQTL, controlling four cold-responsive genes, coincided with a region homoeologous to a frost-tolerance locus (Fr-A (m) 2) reported as a CBF cluster region in einkorn wheat. The 5A eQTL plays a significant role through Cor/Lea gene expression in cold acclimation of wheat. In addition, our results suggest that one or more CBF copies at the Fr-2 region positively regulate other copies, which might amplify the positive effects of the CBF cluster on downstream Cor/Lea gene activation.
Collapse
Affiliation(s)
- Yoichi Motomura
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Julio C. M. Iehisa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
13
|
Han Q, Kang G, Guo T. Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:236-44. [PMID: 23298682 DOI: 10.1016/j.plaphy.2012.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/08/2012] [Indexed: 05/02/2023]
Abstract
Following three-day exposure to -5 °C simulated spring freeze stress, wheat plants at the anther connective tissue formation phase of spike development displayed the drooping and wilting of leaves and markedly increased rates of relative electrolyte leakage. We analysed freeze-stress responsive proteins in wheat leaves at one and three days following freeze-stress exposure, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results indicate that out of 75 protein spots successfully identified under freeze-stress conditions 52 spots were upregulated and 18 were downregulated. These spring freeze-stress responsive proteins were involved in signal transduction, stress/defence/detoxification, protein metabolism (i.e. translation, processing, and degradation), photosynthesis, amino acid metabolism, carbohydrate metabolism, and energy pathways, and may therefore be functionally relevant for many biological processes. The enhanced accumulation of signal transduction proteins such as a C2H2 zinc finger protein, stress/defence/detoxification proteins including LEA-related COR protein, disease resistance protein, Cu/Zn superoxide dismutase, and two ascorbate peroxidases may play crucial roles in the mechanisms of response to spring freeze stress in wheat plants.
Collapse
Affiliation(s)
- Qiaoxia Han
- National Engineering Research Centre for Wheat, the Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 450002 Zhengzhou, China
| | | | | |
Collapse
|
14
|
Karki A, Horvath DP, Sutton F. Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown. Funct Integr Genomics 2012; 13:57-65. [PMID: 23262780 DOI: 10.1007/s10142-012-0303-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold-acclimation-specific processes and pathways, we utilized cold acclimation transcriptomic data from two lines varying in freeze survival but not vernalization. These lines, designated freeze-resistant (FR) and freeze-susceptible (FS), were the source of crown tissue RNA. Well-annotated differentially expressed genes (p ≤ 0.005 and fold change ≥ 2 in response to 4 weeks cold acclimation) were used for gene ontology and pathway analysis. "Abiotic stimuli" was identified as the most enriched and unique for FR. Unique to FS was "cytoplasmic components." Pathway analysis revealed the "triacylglycerol degradation" pathway as significantly downregulated and common to both FR and FS. The most enriched of FR pathways was "neighbors of DREB2A," with the highest positive median fold change. The "13-LOX and 13-HPL" and the "E2F" pathways were enriched in FR only with a negative median fold change. The "jasmonic acid biosynthesis" pathway and four "photosynthetic-associated" pathways were enriched in both FR and FS but with a more negative median fold change in FR than in FS. A pathway unique to FS was "binding partners of LHCA1," which was enriched only in FS with a significant negative median fold change. We propose that the DREB2A, E2F, jasmonic acid biosynthesis, and photosynthetic pathways are critical for discrimination between cold-acclimated lines varying in freeze survival.
Collapse
Affiliation(s)
- Amrit Karki
- University of Wisconsin, Milwaukee, WI, 53202, USA
| | | | | |
Collapse
|
15
|
Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant. Int J Mol Sci 2012; 13:2744-2762. [PMID: 22489122 PMCID: PMC3317382 DOI: 10.3390/ijms13032744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/09/2011] [Accepted: 02/03/2012] [Indexed: 11/16/2022] Open
Abstract
A dwarf mutant (dwf1) was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene) was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1) displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR) and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210). Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.
Collapse
|
16
|
Janská A, Aprile A, Zámečník J, Cattivelli L, Ovesná J. Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genomics 2011; 11:307-25. [PMID: 21360135 PMCID: PMC3098344 DOI: 10.1007/s10142-011-0213-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 11/25/2022]
Abstract
We report a series of microarray-based comparisons of gene expression in the leaf and crown of the winter barley cultivar Luxor, following the exposure of young plants to various periods of low (above and below zero) temperatures. A transcriptomic analysis identified genes which were either expressed in both the leaf and crown, or specifically in one or the other. Among the former were genes responsible for calcium and abscisic acid signalling, polyamine synthesis, late embryogenesis abundant proteins and dehydrins. In the crown, the key organ for cereal overwintering, cold treatment induced transient changes in the transcription of nucleosome assembly genes, and especially H2A and HTA11, which have been implicated in cold sensing in Arabidopsis thaliana. In the leaf, various heat-shock proteins were induced. Differences in expression pattern between the crown and leaf were frequent for genes involved in certain pathways responsible for osmolyte production (sucrose and starch, raffinose, γ-aminobutyric acid metabolism), sugar signalling (trehalose metabolism) and secondary metabolism (lignin synthesis). The action of proteins with antifreeze activity, which were markedly induced during hardening, was demonstrated by a depression in the ice nucleation temperature.
Collapse
Affiliation(s)
- Anna Janská
- Department of Molecular Biology, Crop Research Institute, v.v.i., Drnovská 507, 161 06, Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|